Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 998179, 2022.
Article in English | MEDLINE | ID: mdl-36353489

ABSTRACT

Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.

2.
Biochimie ; 168: 156-168, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31678635

ABSTRACT

Mesenchymal stromal cells (MSCs) and secretome are promising therapies for pulmonary arterial hypertension (PAH). This meta-analysis aimed to provide a precise estimate and compare the therapeutic efficacy of MSC and secretome in PAH. We searched six databases (CINAHL, Cochrane, Ovid Medline, PubMed, Science Direct and Scopus) until December 2018 using search terms related to MSCs, secretome and PAH. Twenty-three studies were included for the meta-analysis. The effect size of pulmonary hemodynamics and right ventricular hypertrophy markers was estimated using random effects model. MSCs and secretome significantly improved pulmonary hemodynamics and right ventricular hypertrophy compared to control. Comparison between MSCs and secretome indicate no significant difference in reducing right ventricular systolic pressure (RVSP) and medial wall thickening (MWT). However, treatment of PAH with secretome significantly improved mean pulmonary arterial pressure (mPAP) (p = 0.018) and right ventricular/left ventricular + septum (RV/LV+S) (p = 0.017) better than MSCs. Meta-regression shows that cell type (p = 0.034) is a predictor of MSCs to reduce RVSP in PAH. Similarly, the effect of secretome on MWT was significantly (p = 0.011) better at 4 weeks compared to 2 weeks of intervention. The overall risk of bias ranges from low to moderate; however, some of the essential elements required in reports of animal trials were not reported. There was evidence of publication bias for RV/LV+S and MWT, but not RVSP. This meta-analysis provides evidence of the therapeutic benefits of MSCs and secretome in PAH and the effect of secretome was similar or superior to MSCs.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Publication Bias , Pulmonary Arterial Hypertension/therapy , Animals , Clinical Trials, Veterinary as Topic , Databases as Topic , Hemodynamics , Humans , Treatment Outcome
3.
J Intercult Ethnopharmacol ; 6(2): 154-157, 2017.
Article in English | MEDLINE | ID: mdl-28512596

ABSTRACT

BACKGROUND/AIM: Protein tyrosine phosphatase 1B (PTP 1B) and dipeptidyl peptidase IV (DPP IV) have been identified as one of the drug targets for the treatment of Type-2 diabetes. This study was designed to screen for PTP 1B and DPP-IV inhibitors from some Nigerian medicinal plants. MATERIALS AND METHODS: PTP 1B and DPP-IV drug discovery kits from Enzo Life Sciences were used to investigate in vitro inhibitory effect of crude methanolic extract of 10 plants; Mangifera indica, Moringa oleifera, Acacia nilotica, Arachis hypogaea, Senna nigricans, Azadirachta indica, Calotropis procera, Leptadenia hastata, Ziziphus mauritiana, and Solanum incanum. RESULTS: The results indicated PTP IB inhibition by S. nigricans (68.2 ± 2.29%), A. indica (67.4 ± 2.80%), A. hypogaea (57.2 ± 2.50%), A. nilotica (55.1 ± 2.19%), and M. oleifera (41.2 ± 1.87%) were significantly (P < 0.05) higher as compared with standard inhibitor, sumarin while that of L. hastata (18.1 ± 2.00%) was significantly lower as compared with sumarin. The PTB 1B inhibition by M. indica (31.5 ± 1.90%) was not significantly (P > 0.05) different from that of sumarin. The DPP-IV inhibition by S. incanum (68.1 ± 2.71%) was significantly higher as compared with a known inhibitor, P32/98. S. nigrican (57.0±1.91%), Z. mauritiana (56.6±2.01%), A. hypogaea (51.0±1.30%), M. indica (44.6 ± 2.40%), C. procera (36.2 ± 2.00%), A. nilotica (35.4 ± 2.10%), and A. indica (33.6 ± 1.50%) show significantly (P < 0.05) lower inhibitions toward DPP-IV. CONCLUSION: The work demonstrated that these plant materials could serve as sources of lead compounds in the development of anti-diabetic agent(s) targeting PTP 1B and/or DPP-IV.

SELECTION OF CITATIONS
SEARCH DETAIL