Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4572, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941313

ABSTRACT

This article presents that acrylate copolymers are the potential candidate against the adsorption of bovine serum albumin (BSA). A series of copolymers poly(methyl methacrylate) (pMMA), poly(3-sulfopropyl methacrylate-co-methyl methacrylate) p(SPMA-co-MMA), and poly(dimethylaminoethyl methacrylate-co-methyl methacrylate) p(DMAEMA-co-MMA) were synthesized via free radical polymerization. These amphiphilic copolymers are thermally stable with a glass transition temperature (Tg) 50-120 °C and observed the impact of surface charge on amphiphilic copolymers to control interactions with the bovine serum albumin (BSA). These copolymers pMD1 and pMS1 have surface charges, - 56.6 and - 72.6 mV at pH 7.4 in PBS buffer solution that controls the adsorption capacity of bovine serum albumin (BSA) on polymers surface. Atomic force microscopy (AFM) analysis showed minimum roughness of 0.324 nm and 0.474 nm for pMS1 and pMD1. Kinetic studies for BSA adsorption on these amphiphilic copolymers showed the best fitting of the pseudo-first-order model that showed physisorption and attained at 25 °C and pH 7.4 within 24 h.


Subject(s)
Polymers , Serum Albumin, Bovine , Kinetics , Polymethyl Methacrylate , Acrylates , Methacrylates
2.
Polymers (Basel) ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080621

ABSTRACT

In this research work, polymer blends of poly-lactic acid (PLA)/ethylene vinyl acetate (EVA) were prepared as the drug carrier materials for a bi-layer drug-loaded coating film for coronary stents. Different optimum compositions of blends were prepared by using an intense mixer. Then, the blends were hot-pressed and later cold-pressed to prepare for films of different thickness. The changes in weight, surface analysis and biodegradability with increasing time were studied using Scanning electron microscopy (SEM), weight loss and biodegradability tests. The mechanical and thermal properties of drug-loaded films were studied through universal testing machine (UTM) and thermo-gravimetric analysis (TGA). The effects of PLA, EVA and drug contents on in-vitro drug contents were investigated through the Ultraviolet-Visible Spectroscopy (UV-VIS) chemical analysis technique. The results obtained clearly showed that the addition of PLA promoted the unleashing of the drug whereas the addition of EVA nearly did not have the same affect. The mechanical properties of these various films can be tuned by adjusting the contents of blend parts. The factors affecting the unleashing of the drug became a serious matter of concern in evaluating the performance of bio-resorbable drug eluting stents. As a result, today's chemical blends may be useful drug carrier materials for drug-loaded tube coatings capable delivering purgative drug in an incredibly tunable and regulated manner.

3.
Membranes (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803777

ABSTRACT

A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m-2 h-1 to 71.2 L m-2 h-1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification.

4.
Polymers (Basel) ; 13(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562477

ABSTRACT

This study is based upon the functionalization of polypropylene (PP) by radical polymerization to optimize its properties by influencing its molecular weight. Grafting of PP was done at different concentrations of maleic anhydride (MAH) and benzoyl peroxide (BPO). The effect on viscosity during and after the reaction was studied by torque rheometer and melt flow index. Results showed that a higher concentration of BPO led to excessive side-chain reactions. At a high percentage of grafting, lower molecular weight product was produced, which was analyzed by viscosity change during and after the reaction. Percentage crystallinity increased by grafting due to the shorter chains, which consequently led to an improvement in the chain's packing. Prepared Maleic anhydride grafted polypropylene (MAH-g-PP) enhanced interactions in PP-PET blends caused a partially homogeneous blend with less voids.

SELECTION OF CITATIONS
SEARCH DETAIL
...