Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 18495, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323726

ABSTRACT

Escherichia coli ST1485 strains belong to the clinically important phylogroup F and have disseminated worldwide in humans, animals, and the environment. Here, we elucidated the pathogenome of a global collection of E. coli ST1485 isolates from diverse sources retrieved from public databases and a high-quality sequenced complete genome of colistin-resistant E. coli strain CFSAN061771 isolated from raw milk cheese which designated as a reference strain. CFSAN061771 belongs to O83:H42-ST1485 pathotype and carries a conjugative ColV plasmid, pCFSAN061771_01, combining extraintestinal virulence genes (ompt, sitA, iroN, etsC, traT, cvaC, hylF, iss, tsh, mchf, iucC, iutA) with a multidrug resistance island (blaTEM-1, aph(6)-Id, aph(3″)-Ib, sul2, dfrA14). Comparative genomic analysis revealed a high frequency of pCFSAN061771_01-like plasmids in E. coli ST1485. A notable evolutionary genetic event in E. coli ST1485 strains is the acquisition of a pCFSAN061771_02-like plasmid, which confers resistance to several antimicrobials, tellurium, and quaternary ammonium compounds. The identical virulence and antibiotic resistance profiles identified in some human and animal strains are worrisome. This is the first study to emphasize the significance of E. coli ST1485 as a global high-risk virulent and multidrug-resistant clone with zoonotic potential.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Animals , Humans , Escherichia coli , Phylogeny , Escherichia coli Infections/genetics , Plasmids/genetics , Colistin , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
2.
Biomark Med ; 16(13): 959-970, 2022 09.
Article in English | MEDLINE | ID: mdl-36052661

ABSTRACT

Aim: To investigate potential DNA methylation in methylcytosine dioxygenases and correlation of TET genes with vitamin B12/ferritin levels in cancer patients. Materials & methods: 200 blood samples were obtained from both cancer patients and healthy individuals. Results: The expression of DNMT1, DNMT3a and DNMT3b was increased in patients with low vitamin B12 and ferritin levels, while the expression of MTR, TET1 and TET3 significantly decreased. DNA methylation analysis in patients with deficient vitamin B12/ferritin levels showed methylomic changes within the location 318/CG and 385/CG in the promoter region of TET1 and TET3, respectively. Conclusion: Vitamin B12/ferritin deficiency contributes to DNA methylation progress in cancer patients.


Subject(s)
Dioxygenases , Neoplasms , 5-Methylcytosine/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Epigenesis, Genetic , Ferritins/metabolism , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neoplasms/complications , Neoplasms/genetics , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Vitamin B 12
3.
Curr Microbiol ; 79(10): 294, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35989347

ABSTRACT

Haloalkophilic bacteria have a potential advantage as a bioremediation organism of high oil-polluted and industrial wastewater. In the current study, Haloalkaliphilic isolates were obtained from Hamralake, Wadi EL-Natrun, Egypt. The phenotype script, biochemical characters, and sequence analysis of bacterial-16S rRNA were used to identify the bacterial isolates; Halomonas HA1 and Marinobacter HA2. These strains required high concentrations of NaCl to ensure bacterial growth, especially Halomonas HA1 strain. Notably, both isolates can degrade phenol at optimal pH values, between 8 and 9, with the ability to grow in pH levels up to 11, like what was seen in the Halomonas HA1 strain. Moreover, both isolates represent two different mechanistic pathways for phenol degradation. Halomonas HA1 exploits the 1,2 phenol meta-cleavage pathway, while Marinobacter HA2 uses the 2,3 ortho-cleavage pathway as indicated by universal primers for 1,2 and 2,3 CTD genes. Interestingly, Marinobacter HA2 isolate eliminated the added phenol within an incubation period of 72 h, while the Halomonas HA1 isolate invested 96 h in degrading 84% of the same amount of phenol. Phylogenetic analysis of these 1,2 CTD (catechol dioxygenase) sequences clearly showed an evolutionary relationship between 1,2 dioxygenases of both Halomonadaceae and Pseudomonadaceae. In comparison, 2,3 CTD of Marinobacter HA2 shared the main domains of the closely related species. Furthermore, semi-quantitative RT-PCR analysis proved the constitutive expression pattern of both dioxygenase genes. These findings provide new isolates of Halomonas sp. and Marinobacter sp. that can degrade phenol at high salt and pH conditions via two independent mechanisms.


Subject(s)
Dioxygenases , Halomonas , Marinobacter , Dioxygenases/genetics , Dioxygenases/metabolism , Marinobacter/genetics , Phenol/metabolism , Phenols/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
5.
Foods ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35159482

ABSTRACT

The aim of this study was to assess the hygienic status of raw milk cheese and determine the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65% of samples exhibited coliforms at 44.5 °C. Of 150 recovered thermotolerant strains, 140 (93.3%) were identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking virulence pattern, stx1-, stx2+, eae-, was detected. Eleven strains (7.8%, 11/140) showed resistance to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A), and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance in raw milk cheese to identify the potential public health burden associated with its consumption.

6.
Foodborne Pathog Dis ; 19(3): 192-198, 2022 03.
Article in English | MEDLINE | ID: mdl-34847725

ABSTRACT

The aim of this study was to determine the occurrence, phenotypic and molecular characteristics of vancomycin-resistant enterococci (VRE), isolated from retail raw cow's milk. One hundred milk samples collected from retail shops in Egypt were examined for the occurrence of VRE by using kanamycin aesculin azide agar supplemented with 4 µg/mL vancomycin. PCR was conducted to determine enterococcal species and to screen the isolated strains for the presence of antibiotic resistance and virulence genes. All isolated strains were characterized by antimicrobial susceptibility testing for 12 antibiotics. From 24 samples (24%), we recovered 22 isolates (91.6%) classified as VRE (minimum inhibitory concentration ≥32) and 2 isolates (8.3%) classified as intermediate resistant to vancomycin (≤16). Enterococcus faecium (29.1%), Enterococcus faecalis (12.5%), Enterococcus casseliflavus (16.6%), and Enterococcus gallinarum (4.1%) were identified by using multiplex PCR. The genus Enterococcus was resistant to clindamycin (100%), linezolid (91.6%), teicoplanin (91.6%), erythromycin (87.5%), and tetracycline (29.1%). Co-resistance to vancomycin, teicoplanin, and linezolid was detected in 83.3% of isolates. Antibiotic resistance genes vanB, tet(M), tet(L), and erm(B) were identified in 29.1%, 16.6%, 8.3%, and 4.1% of isolates, respectively. Virulence genes gelE and esp were detected in 16.6% and 12.5% of isolates, respectively. In conclusion, the high occurrence of co-resistance to vancomycin, teicoplanin, and linezolid reported in this study is alarming. The high frequency of linezolid resistance prompts increased the attention of researchers to routinely perform linezolid susceptibility in food isolates. This study declares potential food safety risks from consumption and improper handling of raw milk regarding clinically important bacteria and promotes necessary legislation for forbidding the selling and consumption of retail raw milk.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Egypt , Female , Gram-Positive Bacterial Infections/microbiology , Linezolid , Microbial Sensitivity Tests , Milk , Multiplex Polymerase Chain Reaction , Teicoplanin , Vancomycin/pharmacology , Vancomycin Resistance , Vancomycin-Resistant Enterococci/genetics
7.
Polymers (Basel) ; 13(15)2021 07 28.
Article in English | MEDLINE | ID: mdl-34372084

ABSTRACT

Biopolymers and nanomaterials are ideal candidates for environmental remediation and heavy metal removal. As hexavalent chromium (Cr6+) is a hazardous toxic pollutant of water, this study innovatively aimed to synthesize nanopolymer composites and load them with phycosynthesized Fe nanoparticles for the full Cr6+ removal from aqueous solutions. The extraction of chitosan (Cht) from prawn shells and alginate (Alg) from brown seaweed (Sargassum linifolium) was achieved with standard characteristics. The tow biopolymers were combined and cross-linked (via microemulsion protocol) to generate nanoparticles from their composites (Cht/Alg NPs), which had a mean diameter of 311.2 nm and were negatively charged (-23.2 mV). The phycosynthesis of iron nanoparticles (Fe-NPs) was additionally attained using S. linifolium extract (SE), and the Fe-NPs had semispherical shapes with a 21.4 nm mean diameter. The conjugation of Cht/Alg NPs with SE-phycosynthesized Fe-NPs resulted in homogenous distribution and stabilization of metal NPs within the polymer nanocomposites. Both nanocomposites exhibited high efficiency as adsorbents for Cr6+ at diverse conditions (e.g., pH, adsorbent dose, contact time and initial ion concentration) using batch adsorption evaluation; the most effectual conditions for adsorption were a pH value of 5.0, adsorbent dose of 4 g/L, contact time of 210 min and initial Cr6+ concentration of 75 ppm. These factors could result in full removal of Cr6+ from batch experiments. The composited nanopolymers (Cht/Alg NPs) incorporated with SE-phycosynthesized Fe-NPs are strongly recommended for complete removal of Cr6+ from aqueous environments.

8.
Foodborne Pathog Dis ; 18(9): 655-660, 2021 09.
Article in English | MEDLINE | ID: mdl-34042521

ABSTRACT

Little is known about the virulence in Bacillus cereus strains isolated from retail dairy products in the Middle East and particularly from Egypt. In this study, the occurrence of B. cereus in 290 samples of dairy products (raw milk, Ras cheese, pasteurized extended shelf life [ESL] milk) collected from retail shops was investigated. The potential of 126 selected isolates of B. cereus to possess genes encoding nonhemolytic enterotoxin, hemolysin BL, and cytotoxin K (cytK), and to grow at 7°C was verified. The highest occurrence of B. cereus was found in raw milk (85%, 85/100) followed by Ras cheese (10%, 10/100) and ESL milk samples (8.8%, 8/90). A large proportion of the B. cereus isolates from raw milk (48.9%, 48/99) and Ras cheese (71.4%, 10/14) had at least one complete set of toxin genes (nhe or hbl). Enterotoxin genes, nheA, nheB, nheC, hblA, hblD, and hblC, were detected in 38.4% (5/13), 53.8% (7/13), 61.5% (8/13), 46.1% (6/13), 46.1% (6/13), and 23.1% (3/13) of ESL milk isolates, respectively. cytK was identified in 42.4% (42/99), 50% (7/14), and 46.2% (6/13) of raw milk, Ras cheese, and ESL milk isolates, respectively. The psychrotrophic ability was observed in 22.2% and 15.3% of isolates recovered from raw milk and ESL milk, respectively. The toxigenic potential of B. cereus strains described in this study may pose a health risk to the consumer and, therefore, the presence of these bacteria in retail dairy products should be monitored to ensure consumers' safety.


Subject(s)
Bacillus cereus , Food Microbiology , Animals , Bacillus cereus/genetics , Egypt , Enterotoxins/genetics , Milk
9.
Sci Rep ; 10(1): 14076, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826930

ABSTRACT

Marine bacterial strains are of great interest for their ability to produce secondary metabolites with anticancer potentials. Isolation, identification, characterization and anticancer activities of isolated bacteria from El-Hamra Lake, Wadi El-Natrun (Egypt) were the objectives of this study. The isolated bacteria were identified as a moderately halophilic alkaliphilic strain. Ethyl acetate extraction was performed and identified by liquid chromatography-mass spectrophotometry (LC-MS-MS) and nuclear magnetic resonance analysis (NMR). Cytotoxicity of the extract was assessed on the HepG2 cell line and normal human peripheral lymphocytes (HPBL) in vitro. Halomonas sp. HA1 extract analyses revealed anticancer potential. Many compounds have been identified including cyclo-(Leu-Leu), cyclo-(Pro-Phe), C17-sphinganine, hexanedioic acid, bis (2-ethylhexyl) ester, surfactin C14 and C15. The extract exhibited an IC50 of 68 ± 1.8 µg/mL and caused marked morphological changes in treated HepG2 cells. For mechanistic anticancer evaluation, 20 and 40 µg/mL of bacterial extract were examined. The up-regulation of apoptosis-related genes' expression, P53, CASP-3, and BAX/BCL-2 at mRNA and protein levels proved the involvement of P53-dependant mitochondrial apoptotic pathway. The anti-proliferative properties were confirmed by significant G2/M cell cycle arrest and PCNA down-regulation in the treated cells. Low cytotoxicity was observed in HPBL compared to HepG2 cells. In conclusion, results suggest that the apoptotic and anti-proliferative effects of Halomonas sp. HA1 extract on HepG2 cells can provide it as a candidate for future pharmaceutical industries.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/pathology , Cell Extracts/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Halomonas/chemistry , Liver Neoplasms/pathology , Antineoplastic Agents/isolation & purification , Cell Division/drug effects , Cell Extracts/isolation & purification , DNA Breaks, Single-Stranded , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Lymphocytes/drug effects , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Ribotyping , Up-Regulation/drug effects
10.
Infect Genet Evol ; 73: 126-131, 2019 09.
Article in English | MEDLINE | ID: mdl-31029792

ABSTRACT

There is emerging evidence that food of animal origin may be responsible for the spread of multidrug resistant extraintestinal pathogenic Escherichia coli in the community. Here, we describe the emergence of colistin resistance gene, mcr-1, in a strain belonging to the dominant uropathogenic E. coli ST69 lineage. E. coli strain CFSAN061770 was isolated during monitoring of the popular Egyptian raw milk cheese, karish cheese, for the presence of colistin resistance. The complete genome of E. coli strain CFSAN061770 comprises a chromosome of 5,292,297 bp with a G + C content of 50.6%. Further, three plasmids named pEGY1-MCR-1, pEGY2 and pEGY3 of 228,947 bp, 103,234 bp and 87,012 bp were detected, respectively. Plasmid pEGY1-MCR-1 belongs to the IncHI2 incompatibility group and carries the colistin resistance mcr-1 gene flanked by two ISApl1 elements and forms a composite transposon. It mediates resistance to aminoglycosides (aadA1 and aadA2), phenicol (cmlA1 and floR), sulfonamides (sul3), and tetracycline (tet(A)), and these loci were found clustered in a multidrug resistant region. Plasmid pEGY3 carries a complex multiple resistance locus (CMR) (aph(3')-Ia, strA, strB, sul2, and blaTEM-1) encoding resistance to different classes of antibiotics. Interestingly, the closest plasmids to plasmid pEGY1-MCR-1 detected from the NCBI Blast search belonged to the incompatibility group IncHI2 and were from the Kingdom of Saudi Arabia and Qatar which suggests a dissemination of pEGY1-MCR-1-like plasmids in the Middle East. Most striking, and of great public health concern is that strain CFSAN061770 carries five virulence genes (iss, fimH, iutA, kpsMIII and kpsTIII) which were identified in clinical extraintestinal pathogenic E. coli. Besides that, it carries the astA gene, which codes for the enteroaggregative E. coli heat-stable toxin 1 (EAST1).


Subject(s)
Anti-Bacterial Agents/pharmacology , Cheese/microbiology , Colistin/pharmacology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Food Microbiology , Plasmids/genetics , Escherichia coli/classification , Escherichia coli Proteins/genetics , Phylogeny , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...