Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 137(20): 2152-2165, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29348261

ABSTRACT

BACKGROUND: Defining conserved molecular pathways in animal models of successful cardiac regeneration could yield insight into why adult mammals have inadequate cardiac regeneration after injury. Insight into the transcriptomic landscape of early cardiac regeneration from model organisms will shed light on evolutionarily conserved pathways in successful cardiac regeneration. METHODS: Here we describe a cross-species transcriptomic screen in 3 model organisms for cardiac regeneration: axolotl, neonatal mice, and zebrafish. Apical resection to remove ≈10% to 20% of ventricular mass was carried out in these model organisms. RNA-sequencing analysis was performed on the hearts harvested at 3 time points: 12, 24, and 48 hours after resection. Sham surgery was used as internal control. RESULTS: Genes associated with inflammatory processes were found to be upregulated in a conserved manner. Complement receptors (activated by complement components, part of the innate immune system) were found to be highly upregulated in all 3 species. This approach revealed induction of gene expression for complement 5a receptor 1 in the regenerating hearts of zebrafish, axolotls, and mice. Inhibition of complement 5a receptor 1 significantly attenuated the cardiomyocyte proliferative response to heart injury in all 3 species. Furthermore, after left ventricular apical resection, the cardiomyocyte proliferative response was diminished in mice with genetic deletion of complement 5a receptor 1. CONCLUSIONS: These data reveal that activation of complement 5a receptor 1 mediates an evolutionarily conserved response that promotes cardiomyocyte proliferation after cardiac injury and identify complement pathway activation as a common pathway of successful heart regeneration.


Subject(s)
Evolution, Molecular , Heart/physiology , Receptor, Anaphylatoxin C5a/metabolism , Regeneration/physiology , Ambystoma mexicanum , Animals , Animals, Newborn , Cell Proliferation , Gene Expression Profiling , Gene Ontology , Mice , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peptides, Cyclic/pharmacology , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/genetics , Sequence Analysis, RNA , Troponin T/analysis , Zebrafish
2.
Nat Commun ; 8(1): 2286, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273779

ABSTRACT

Salamanders exhibit an extraordinary ability among vertebrates to regenerate complex body parts. However, scarce genomic resources have limited our understanding of regeneration in adult salamanders. Here, we present the ~20 Gb genome and transcriptome of the Iberian ribbed newt Pleurodeles waltl, a tractable species suitable for laboratory research. We find that embryonic stem cell-specific miRNAs mir-93b and mir-427/430/302, as well as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded dramatically in the Pleurodeles waltl genome and are co-expressed during limb regeneration. Moreover, we find that a family of salamander methyltransferases is expressed specifically in adult appendages. Using CRISPR/Cas9 technology to perturb transcription factors, we demonstrate that, unlike the axolotl, Pax3 is present and necessary for development and that contrary to mammals, muscle regeneration is normal without functional Pax7 gene. Our data provide a foundation for comparative genomic studies that generate models for the uneven distribution of regenerative capacities among vertebrates.


Subject(s)
Extremities/physiology , Genome/genetics , MicroRNAs/genetics , Pleurodeles/genetics , Regeneration/genetics , Ambystoma mexicanum/genetics , Animals , CRISPR-Cas Systems , DNA Transposable Elements/genetics , Embryonic Stem Cells/metabolism , Gene Editing , Gene Expression Profiling , Genomics , Muscle, Skeletal/physiology , PAX3 Transcription Factor/genetics , PAX7 Transcription Factor/genetics , Proto-Oncogenes/genetics , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL