Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404972, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651732

ABSTRACT

Controlling the end-groups of biocompatible polymers is crucial for enabling polymer-based therapeutics and nanomedicine. Typically, end-group diversification is a challenging and time-consuming endeavor, especially for polymers prepared via ionic polymerization mechanisms with limited functional group tolerance. In this study, we present a facile end-group diversification approach for poly(2-oxazoline)s (POx), enabling quick and reliable production of heterotelechelic polymers to facilitate POxylation. The approach relies on the careful tuning of reaction parameters to establish differential reactivity of a pentafluorobenzyl initiator fragment and the living oxazolinium chain-end, allowing the selective introduction of N-, S-, O-nucleophiles via the termination of the polymerization, and a consecutive nucleophilic para-fluoro substitution. The value of this approach for the accelerated development of nanomedicine is demonstrated through the synthesis of well-defined lipid-polymer conjugates and POx-polypeptide block-copolymers, which are well-suited for drug and gene delivery. Furthermore, we investigated the application of a lipid-POx conjugate for the formulation and delivery of mRNA-loaded lipid nanoparticles for immunization against the SARS-COV-2 virus, underscoring the value of POx as a biocompatible polymer platform.

2.
Mol Ther ; 32(5): 1266-1283, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38569556

ABSTRACT

Carrier-free naked mRNA vaccines may reduce the reactogenicity associated with delivery carriers; however, their effectiveness against infectious diseases has been suboptimal. To boost efficacy, we targeted the skin layer rich in antigen-presenting cells (APCs) and utilized a jet injector. The jet injection efficiently introduced naked mRNA into skin cells, including APCs in mice. Further analyses indicated that APCs, after taking up antigen mRNA in the skin, migrated to the lymph nodes (LNs) for antigen presentation. Additionally, the jet injection provoked localized lymphocyte infiltration in the skin, serving as a physical adjuvant for vaccination. Without a delivery carrier, our approach confined mRNA distribution to the injection site, preventing systemic mRNA leakage and associated systemic proinflammatory reactions. In mouse vaccination, the naked mRNA jet injection elicited robust antigen-specific antibody production over 6 months, along with germinal center formation in LNs and the induction of both CD4- and CD8-positive T cells. By targeting the SARS-CoV-2 spike protein, this approach provided protection against viral challenge. Furthermore, our approach generated neutralizing antibodies against SARS-CoV-2 in non-human primates at levels comparable to those observed in mice. In conclusion, our approach offers a safe and effective option for mRNA vaccines targeting infectious diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines , Animals , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , mRNA Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Female , Antigen-Presenting Cells/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , CD8-Positive T-Lymphocytes/immunology , Antibodies, Neutralizing/immunology , Humans , Vaccination/methods
3.
J Control Release ; 367: 708-736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295996

ABSTRACT

Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.


Subject(s)
Macular Degeneration , Neurodegenerative Diseases , Humans , Drug Delivery Systems , Neurodegenerative Diseases/drug therapy , Macular Degeneration/drug therapy , Pharmaceutical Preparations , Administration, Topical
4.
Acta Neuropathol Commun ; 11(1): 203, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115140

ABSTRACT

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Homeostasis , Ligases/genetics , Ligases/metabolism , Medulloblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Quality of Life
5.
Small ; : e2303682, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817368

ABSTRACT

Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.

6.
Proc Natl Acad Sci U S A ; 120(29): e2214320120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428918

ABSTRACT

Integrating antigen-encoding mRNA (Messenger RNA) and immunostimulatory adjuvant into a single formulation is a promising approach to potentiating the efficacy of mRNA vaccines. Here, we developed a scheme based on RNA engineering to integrate adjuvancy directly into antigen-encoding mRNA strands without hampering the ability to express antigen proteins. Short double-stranded RNA (dsRNA) was designed to target retinoic acid-inducible gene-I (RIG-I), an innate immune receptor, for effective cancer vaccination and then tethered onto the mRNA strand via hybridization. Tuning the dsRNA structure and microenvironment by changing its length and sequence enabled the determination of the structure of dsRNA-tethered mRNA efficiently stimulating RIG-I. Eventually, the formulation loaded with dsRNA-tethered mRNA of the optimal structure effectively activated mouse and human dendritic cells and drove them to secrete a broad spectrum of proinflammatory cytokines without increasing the secretion of anti-inflammatory cytokines. Notably, the immunostimulating intensity was tunable by modulating the number of dsRNA along the mRNA strand, which prevents excessive immunostimulation. Versatility in the applicable formulation is a practical advantage of the dsRNA-tethered mRNA. Its formulation with three existing systems, i.e., anionic lipoplex, ionizable lipid-based lipid nanoparticles, and polyplex micelles, induced appreciable cellular immunity in the mice model. Of particular interest, dsRNA-tethered mRNA encoding ovalbumin (OVA) formulated in anionic lipoplex used in clinical trials exerted a significant therapeutic effect in the mouse lymphoma (E.G7-OVA) model. In conclusion, the system developed here provides a simple and robust platform to supply the desired intensity of immunostimulation in various formulations of mRNA cancer vaccines.


Subject(s)
Neoplasms , RNA, Double-Stranded , Humans , Animals , Mice , RNA, Double-Stranded/genetics , Adjuvants, Immunologic/pharmacology , Antigens , Immunity, Cellular , Cytokines/genetics , RNA, Messenger/genetics , Mice, Inbred C57BL , Neoplasms/therapy
7.
ACS Macro Lett ; 11(2): 270-275, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35574780

ABSTRACT

Phosphatidylserine (PtdSer), one of the phospholipids that the apoptotic cell exposes, has emerged for anti-inflammatory therapy via polarizing inflammatory microglia (Mi1) to anti-inflammatory phenotype (Mi2). In this study, we report microglia polarization effect of PtdSer-exposing polymeric particles (PSPs). PSPs upregulated Mi2 microglia and suppressed Mi1 microglia through peroxisome proliferator-activated receptor gamma upregulation in vitro and in vivo. This study highlights the potential of PSPs for anti-inflammatory therapy.


Subject(s)
Microglia , PPAR gamma , Anti-Inflammatory Agents/pharmacology , PPAR gamma/genetics , Phosphatidylserines/pharmacology
8.
Mol Pharm ; 18(9): 3281-3289, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34351769

ABSTRACT

Lipid-based formulations, such as self-microemulsifying drug-delivery systems (SMEDDSs), are promising tools for the oral delivery of poorly water-soluble drugs. However, failure to maintain adequate aqueous solubility after coming into contact with gastrointestinal fluids is a major drawback. In this study, we examined the use of a novel cinnamic acid-derived oil-like material (CAOM) that binds drugs with a high affinity through π-π stacking and hydrophobic interactions, as an oil core in a SMEDDS for the oral delivery of fenofibrate in rats. The use of the CAOM in the SMEDDS resulted in an unprecedented enhancement in fenofibrate bioavailability, which exceeded the bioavailability values obtained using SMEDDSs based on corn oil, a conventional triglyceride oil, or Labrasol, an enhancer of intestinal permeation. Further characterization revealed that the CAOM SMEDDS does not alter the intestinal permeability and has no inhibitory activity on P-glycoprotein-mediated drug efflux. The results reported herein demonstrate the strong potential of CAOM formulations as new solubilizers for the efficient and safe oral delivery of drugs that have limited water solubility.


Subject(s)
Drug Delivery Systems/methods , Emulsions/chemistry , Excipients/chemistry , Fenofibrate/pharmacokinetics , Lipids/chemistry , Administration, Oral , Animals , Biological Availability , Chemistry, Pharmaceutical , Corn Oil/chemistry , Dogs , Drug Compounding/methods , Drug Liberation , Fenofibrate/administration & dosage , Glycerides/chemistry , Intestinal Mucosa/metabolism , Madin Darby Canine Kidney Cells , Male , Models, Animal , Rats , Solubility , Water/chemistry
9.
Pharmaceutics ; 13(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062771

ABSTRACT

Subunit vaccines based on antigen-encoding nucleic acids have shown great promise for antigen-specific immunization against cancer and infectious diseases. Vaccines require immunostimulatory adjuvants to activate the innate immune system and trigger specific adaptive immune responses. However, the incorporation of immunoadjuvants into nonviral nucleic acid delivery systems often results in fairly complex structures that are difficult to mass-produce and characterize. In recent years, minimalist approaches have emerged to reduce the number of components used in vaccines. In these approaches, delivery materials, such as lipids and polymers, and/or pDNA/mRNA are designed to simultaneously possess several functionalities of immunostimulatory adjuvants. Such multifunctional immunoadjuvants encode antigens, encapsulate nucleic acids, and control their pharmacokinetic or cellular fate. Herein, we review a diverse class of multifunctional immunoadjuvants in nucleic acid subunit vaccines and provide a detailed description of their mechanisms of adjuvanticity and induction of specific immune responses.

10.
J Control Release ; 332: 260-268, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33647431

ABSTRACT

Genome editing using CRISPR/Cas9 has attracted considerable attention for the treatment of genetic disorders and viral infections. Co-delivery of Cas9 mRNA and single guide (sg)RNA is a promising strategy to efficiently edit the genome of various cell types, including non-dividing cells, with minimal safety concerns. However, co-delivery of two RNA species with significantly different sizes, such as Cas9 mRNA (4.5 kb) and sgRNA (0.1 kb), is still challenging, especially in vivo. Here, we addressed this issue by using a PEGylated polyplex micelle (PM) condensing the RNA in its core. PM loading sgRNA alone released sgRNA at minimal dilution in buffer, while PM loading Cas9 mRNA alone was stable even at higher dilutions. Interestingly, co-encapsulating sgRNA with Cas9 mRNA in a single PM prevented sgRNA release upon dilution, which led to the enhanced tolerability of sgRNA against enzymatic degradation. Subsequently, PM with co-encapsulated RNA widely induced genome editing in parenchymal cells in the mouse brain, including neurons, astrocytes, and microglia, following intraparenchymal injection, at higher efficiency than that by co-delivery of PMs loaded with either Cas9 mRNA or sgRNA separately. To the best of our knowledge, this is the first report demonstrating the utility of RNA-based delivery of CRISPR/Cas9 in inducing genome editing in the brain parenchymal cells. Furthermore, the efficiency of genome editing using PMs was higher than using a non-PEGylated polyplex, due to the enhanced diffusion of PMs in the brain tissue. The results reported herein demonstrate the potential of using PMs to co-encapsulate Cas9 mRNA and sgRNA for in vivo genome editing.


Subject(s)
Gene Editing , RNA, Guide, Kinetoplastida , Animals , Brain , CRISPR-Cas Systems , Mice , Micelles , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics
11.
Mol Pharm ; 17(10): 3773-3782, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32881529

ABSTRACT

The intravenous administration of drug-loaded nanoparticles (NPs) is needed to achieve passive or active targeting in disease tissues. However, when the loaded drug is a hydrophobic small molecule, the NPs fail to reach adequate plasma drug concentrations mainly because of premature drug release. The pharmacokinetics of such drugs can be controlled by covalent modification, but this approach could compromise the safety or potency of the drug. In this study, we investigated two formulation parameters that could be used to improve the plasma concentrations of unmodified drugs that are loaded in a nanoemulsion (NE), a core-shell type NP. The first parameter is the loading ratio, and the second is the affinity of the drug to the core. Optimized NEs with reduced drug loading and with a high drug-core affinity resulted in a 12.4- and 11.2-fold increase in the plasma retention of curcumin and paclitaxel, respectively. Our strategy for enhancing the drug-core interaction affinity relied on mixing oils and surfactants to achieve cooperativity in noncovalent interactions, such as hydrophobic interactions, hydrogen bonding, and π-π stacking, which was further confirmed by theoretical calculations of interaction affinities. Finally, we report on the development of a cinnamic acid-derived oil-like material as a novel drug vehicle with exceptional solubilizing ability that could be used in intravenous formulations of NEs.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cinnamates/chemistry , Drug Carriers/chemistry , Pharmaceutic Aids/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacokinetics , Drug Liberation , Emulsions , Female , Hydrophobic and Hydrophilic Interactions , Injections, Intravenous , Mice , Mice, Inbred ICR , Models, Animal , Nanoparticles/chemistry , Oils/chemistry , Paclitaxel/administration & dosage , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Solubility
12.
Sci Adv ; 6(26): eabb8133, 2020 06.
Article in English | MEDLINE | ID: mdl-32637625

ABSTRACT

A major critical issue in systemically administered nanomedicines is nonspecific clearance by the liver sinusoidal endothelium, causing a substantial decrease in the delivery efficiency of nanomedicines into the target tissues. Here, we addressed this issue by in situ stealth coating of liver sinusoids using linear or two-armed poly(ethylene glycol) (PEG)-conjugated oligo(l-lysine) (OligoLys). PEG-OligoLys selectively attached to liver sinusoids for PEG coating, leaving the endothelium of other tissues uncoated and, thus, accessible to the nanomedicines. Furthermore, OligoLys having a two-armed PEG configuration was ultimately cleared from sinusoidal walls to the bile, while OligoLys with linear PEG persisted in the sinusoidal walls, possibly causing prolonged disturbance of liver physiological functions. Such transient and selective stealth coating of liver sinusoids by two-arm-PEG-OligoLys was effective in preventing the sinusoidal clearance of nonviral and viral gene vectors, representatives of synthetic and nature-derived nanomedicines, respectively, thereby boosting their gene transfection efficiency in the target tissues.


Subject(s)
Nanomedicine , Polyethylene Glycols , Liver
13.
Int J Pharm ; 553(1-2): 398-407, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30393168

ABSTRACT

Curcumin, a low molecular weight, hydrophobic compound, exhibits strong anti-cancer effects and has a high margin of safety. However, its poor water solubility, rapid metabolism and degradation make it relatively ineffective, but intracellular delivery using nanoparticles (NPs) would solve these problems. In this study, we formulated curcumin in two-structurally distinct NPs: a nanoemulsion (Cur-NE) and a Niosome (Cur-NIO), evaluated their in-vitro cytotoxic effects and examined their mechanisms of drug delivery. The use of Cur-NIO resulted in an unexpected increase in the intracellular accumulation of curcumin and induced a potent cytotoxic effect compared to Cur-NE. To our surprise, however, the effects of the endocytosis of NIO as well as that for NE on the cellular delivery of curcumin were negligible. Consequently, we concluded that Cur-NIO delivers curcumin directly to the cytosol via transfer from the NIO to the cell membrane. The results of Förster resonance energy transfer (FRET) and phase-transfer studies indicate that Cur-NIO exhibits efficient transfer into model membranes or organic interfaces. Moreover, we found that Cur-NE shows a poor transfer efficiency. This could be due to the presence of a hydrophobic oil core that reduces the probability of curcumin to transfer upon contact with the membrane. To the best of our knowledge, this is the first study of the effect of NP structure on the membrane-mediated transfer efficiency of low molecular weight, hydrophobic compounds.


Subject(s)
Antineoplastic Agents/administration & dosage , Curcumin/administration & dosage , Drug Delivery Systems , Nanoparticles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Curcumin/chemistry , Curcumin/pharmacology , Emulsions , Endocytosis , Fluorescence Resonance Energy Transfer/methods , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes , Solubility
14.
Int J Nanomedicine ; 11: 2685-94, 2016.
Article in English | MEDLINE | ID: mdl-27354798

ABSTRACT

15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has a dual action of stimulating anti-inflammation and anti-proliferation when exogenously administered at high doses. However, at lower doses, it can be toxic inducing opposite actions, ie, stimulation of both inflammation and cell proliferation. This biphasic phenomenon of 15d-PGJ2 is believed to be due to its multitarget behavior. In this study, we provide a strategy for controlling such biphasic pharmacodynamics by separating its dual actions while retaining the beneficial one by using a nanoemulsion (NE). The 15d-PGJ2 was encapsulated in the NE composed of triolein/distearoyl phosphatidylcholine/Tween 80 at a high encapsulation ratio (>83%). Furthermore, NE enhanced drug retention by slowing down its release rate, which was, unconventionally, inversely dependent on the total surface area of the NE system. Next, focusing on the biphasic effect on cell proliferation, we found that the 15d-PGJ2-loaded slow-release NE showed only a dose-dependent inhibition of the viability of a mouse macrophage cell line, RAW264.7, although a fast-release NE as well as free 15d-PGJ2 exerted a biphasic effect. The observed slow-release kinetics are believed to be responsible for elimination of the biphasic pharmacodynamics of 15d-PGJ2 mainly for two reasons: 1) a high proportion of 15d-PGJ2 that is retained in the NE was delivered to the cytosol, where proapoptotic targets are located and 2) 15d-PGJ2 was able to bypass cell membrane-associated targets that lead to the induction of cellular proliferation. Collectively, our strategy of eliminating the 15d-PGJ2-induced biphasic pharmacodynamics was based on the delivery of 15d-PGJ2 to its desired site of action, excluding undesired sites, on a subcellular level.


Subject(s)
Nanostructures , Prostaglandin D2/analogs & derivatives , Animals , Cell Line , Cell Membrane/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Emulsions/chemistry , Macrophages/drug effects , Mice , Nanostructures/chemistry , Phosphatidylcholines/chemistry , Polysorbates/chemistry , Prostaglandin D2/administration & dosage , Prostaglandin D2/chemistry , Prostaglandin D2/pharmacokinetics , Triolein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...