Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Clin Tuberc Other Mycobact Dis ; 35: 100430, 2024 May.
Article in English | MEDLINE | ID: mdl-38560029

ABSTRACT

Drug resistance among Mycobacterium tuberculosis (MTB) strains is a growing concern in developing countries. We conducted a comprehensive search for relevant studies in Iran on PubMed, Scopus, and Embase until June 12, 2020. Our study focused on determining the prevalence of antibiotic resistance in MTB isolates, with subgroup analyses based on year, location, and drug susceptibility testing (DST) methods. Statistical analyses were performed using STATA software. Our meta-analysis included a total of 47 articles. Among new TB cases, we found the following prevalence rates: Any-resistance to first-line drugs: 31 % (95 % CI, 24-38), mono-drug resistance: 15 % (95 % CI, 10-22), and multidrug resistance to first-line drugs: 6 % (95 % CI, 4-8). There was a significant variation in the rate of MDR among new TB cases based on the year of publication, location, and DST methods (P < 0.0001). We observed substantial variability in multidrug-resistant TB rates among new cases across the studies. Stratified analyses revealed that publication years and DST methods significantly affected resistance rates. Studies from southern and central Iran reported higher any-drug resistance rates, suggesting regional differences. Among retreatment cases, the prevalence rates were as follows: Any resistance: 68 % (95 % CI 58-78), mono-resistance: 19 % (95 % CI 7-34), multidrug resistance: 28 % (95 % CI 15-43). Our study revealed that the prevalence of drug-resistant TB (DR-TB) among TB cases in Iran is higher than the global average. Particularly, MDR-TB among retreatment TB cases is a significant public health issue.

2.
Mikrochim Acta ; 191(1): 2, 2023 12 02.
Article in English | MEDLINE | ID: mdl-38040925

ABSTRACT

The development of an electrochemical aptasensor for the detection of CA125 as an ovarian cancer biomarker using gold nanostructures (GNs) modified electrodes is reported. The GNs were deposited on the surface of fluorine-doped tin oxide electrodes using a simple electrochemical method and the effects of pH and surfactant concentration on the topography and electrochemical properties of the resulting GNs modified electrodes were investigated. The electrodes were characterized using field-emission scanning electron microscopy and X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The best electrode, in terms of the uniformity of the deposited GNs and the increase in electroactive surface area, was used for development of an aptasensor for CA125 tumor marker detection in human serum. Signal amplification was done by using aptamer-conjugated gold nanorods resulting in the detection limit of 2.6 U/ml and a linear range of 10 to 800 U/ml. The results showed that without the need for expensive antibodies, the developed aptasensor could specifically measure the clinically relevant concentrations of the tumor marker in human serum.


Subject(s)
Aptamers, Nucleotide , Metal Nanoparticles , Nanostructures , Neoplasms , Humans , Biomarkers, Tumor , Metal Nanoparticles/chemistry , Gold/chemistry , Aptamers, Nucleotide/chemistry , Electrodes
3.
Pathog Glob Health ; 117(7): 611-622, 2023 10.
Article in English | MEDLINE | ID: mdl-36794800

ABSTRACT

BACKGROUND: Shigellosis remains one of the global causes of morbidity and mortality. However, the global emergence of antibiotic resistance has become the leading cause of treatment failure in shigellosis. This review aimed to provide an updated picture of the antimicrobial resistance rates in Shigella species in Iranian pediatrics. METHODS: A comprehensive systematic search was performed on PubMed, Scopus, Embase, and Web of Science until 28 July 2021. The meta-analysis was performed by computing the pooled using a random-effects model with Stata/SE software, v.17.1. The discrepancy within articles was surveyed by the forest plot in addition to the I2 statistic. All statistical interpretations were reported on a 95% confidence interval (CI) basis. RESULTS: Totally, of 28 eligible studies published between 2008 and 2021. The pooled prevalence rate of multidrug-resistant (MDR) was 63% (95% CI 50-76). Regarding suggested antimicrobial agents for Shigella species, the prevalence of resistance for ciprofloxacin, azithromycin, and ceftriaxone as first- and second-line treatments for shigellosis were 3%, 30%, and 28%, respectively. In contrast, resistance to cefotaxime, cefixime, and ceftazidime was 39%, 35%, and 20%. Importantly, subgroup analyses indicated that an increase in resistance rates during the periods (2008-2014, 2015-2021) was recognized for ciprofloxacin (0 % to 6%) and ceftriaxone (6% to 42%). CONCLUSION: Our findings revealed that ciprofloxacin is an effective drug for shigellosis in Iranian children. The substantially high prevalence estimation proposes that the first- and second-line treatments for shigellosis are the major threat to public health and active antibiotic treatment policies are essential.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Iran/epidemiology , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use
4.
Sci Rep ; 12(1): 18945, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347929

ABSTRACT

The core-shell non-enzymatic glucose sensors are generally fabricated by chemical synthesis approaches followed by a binder-based immobilization process. Here, we have introduced a new approach to directly synthesis the core-shell of Au@Cu and its Au@CuxO oxides on an FTO electrode for non-enzymatic glucose detection. Physical vapor deposition of Au thin film followed by thermal annealing has been used to fabricate Au nanocores on the electrode. The Cu shells have been deposited selectively on the Au cores using an electrodeposition method. Additionally, Au@Cu2O and Au@CuO have been synthesized via post thermal annealing of the Au@Cu electrode. This binder-free and selective-growing approach has the merit of high electrooxidation activity owing to improving electron transfer ability and providing more active sites on the surface. Electrochemical measurements indicate the superior activity of the Au@Cu2O electrode for glucose oxidation. The high sensitivity of 1601 µAcm-2 mM-1 and a low detection limit of 0.6 µM are achieved for the superior electrode. Additionally, the sensor indicates remarkable reproducibility and supplies accurate results for glucose detection in human serums. Moreover, this synthesis approach can be used for fast, highly controllable and precise fabrication of many core-shell structures by adjusting the electrochemical deposition and thermal treatment parameters.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Gold/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Nanostructures/chemistry , Electrodes , Glucose/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
5.
Sci Rep ; 10(1): 7232, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350345

ABSTRACT

A new approach has been developed to improve sensing performances of electrochemically grown Au nanostructures (AuNSs) based on the pre-seeding of the electrode. The pre-seeding modification is simply carried out by vacuum thermal deposition of 5 nm thin film of Au on the substrate followed by thermal annealing at 500 °C. The electrochemical growth of AuNSs on the pre-seeded substrates leads to impressive electrochemical responses of the electrode owing to the seeding modification. The dependence of the morphology and the electrochemical properties of the AuNSs on various deposition potentials and times have been investigated. For the positive potentials, the pre-seeding leads to the growth of porous and hole-possess networks of AuNSs on the surface. For the negative potentials, AuNSs with carved stone ball shapes are produced. The superior electrode was achieved from AuNSs developed at 0.1 V for 900 s with pre-seeding modification. The sensing properties of the superior electrode toward glucose detection show a high sensitivity of 184.9 µA mM-1 cm-2, with a remarkable detection limit of 0.32 µM and a wide range of linearity. The excellent selectivity and reproducibility of the sensors propose the current approach as a large-scale production route for non-enzymatic glucose detection.

6.
Mikrochim Acta ; 187(5): 276, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32307592

ABSTRACT

A bimetallic nanostructure of Co/Cu for the non-enzymatic determination of glucose is presented. The heterostructure includes cobalt thin film on a porous array of Cu nanocolumns. Glancing angle deposition (GLAD) method was used to grow Cu nanocolumns directly on a fluorine-doped tin oxide (FTO) substrate. Then a thin film of cobalt was electrodeposited on the Cu nanostructures. Various characterization studies were performed in order to define the optimum nanostructure for the determination of glucose. The results showed remarkable boosting of the electrocatalytic activity of Co/Cu bimetallic structure compare to the responses achieved by the monometallic structures of Co or Cu. The sensor showed two linear response ranges for the determination of glucose at 0.55 V in 0.1 M NaOH, from 5 µM-1 mM and 2-9 mM. The sensitivity was 1741 (µA mM-1 cm-2) and 626 (µA mM-1 cm-2), respectively, while the detection limit for a signal-to-noise ratio of 3 was found to be 0.4 µM. The sensor exhibited excellent selectivity and was successfully applied to the determination of glucose in real human blood serum samples. Graphical Abstract Schematic representation of fabrication process of the glucose sensor of Co (Cobalt)/Cu (Copper) on Fluorine doped Tin Oxide (FTO). The current voltage plots show higher electrooxidation activity of the bimetallic nanostructure of Co/Cu/FTO relative to the bare Co/FTO.


Subject(s)
Alloys/chemistry , Biosensing Techniques , Electrochemical Techniques , Glucose/analysis , Nanostructures/chemistry , Cobalt/chemistry , Copper/chemistry , Electrodes , Fluorine/chemistry , Humans , Particle Size , Surface Properties , Tin Compounds/chemistry
7.
Clin Lab ; 65(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30969066

ABSTRACT

BACKGROUND: Clostridioides difficile is a major cause of nosocomial infectious diarrhea in hospitalized patients throughout the world. METHODS: A multiplex real-time PCR assay was developed and evaluated in comparison with toxigenic culture (TC) (as gold standard method) for direct detection of toxigenic C. difficile in fecal specimens. The multiplex real-time PCR assay simultaneously detected glutamate dehydrogenase (gluD), toxin A (tcdA), toxin B (tcdB), and binary toxin (cdtB) genes in stool samples. RESULTS: The results of multiplex real-time PCR were compared to those of the TC method in 250 patients suspected of C. difficile infection. The prevalence of positive TC was 13.6%. Forty-two stool samples (16.8%) were determined to be gluD+ using multiplex real-time PCR. These included 35 (83.3%) toxigenic (32 tcdA+, tcdB+ and three tcdB+) and 7 (20.0%) were cdtB+. The multiplex real-time PCR assay had a sensitivity of 91.45%, specificity of 99.54%, and positive and negative predictive values of 97% and 98.6%, respectively, compared to the TC method for diagnosis of C. difficile. The analytical sensitivity of the multiplex real-time PCR assay was estimated to be 102 CFU/g of stools and 0.0200 pg of genomic DNA from culture. The analytical specificity was determined to be 100% by using enteric and non-C. difficile standard bacterial strains. CONCLUSIONS: The molecular method developed in the study was rapid, sensitive, and specific for detection of toxigenic C. difficile. It is applicable to be performed in clinical laboratories and correlated well with the results obtained by TC.


Subject(s)
Clostridioides difficile/isolation & purification , Diarrhea/microbiology , Feces/chemistry , Real-Time Polymerase Chain Reaction/methods , Aged , Aged, 80 and over , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clinical Laboratory Techniques , Diarrhea/diagnosis , Enterocolitis, Pseudomembranous/diagnosis , Enterotoxins , Female , Humans , Male , Middle Aged , Multiplex Polymerase Chain Reaction , ROC Curve , Sensitivity and Specificity
8.
J Med Microbiol ; 68(1): 11-25, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30431421

ABSTRACT

There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Fosfomycin/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacterial Infections/microbiology , Geography , Gram-Negative Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/epidemiology , Humans , Prevalence
9.
Iran J Basic Med Sci ; 22(11): 1267-1274, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32128090

ABSTRACT

OBJECTIVES: The present study investigated the prevalence of genes encoding for exotoxins, adhesion and biofilm factors in Staphylococcus aureus isolates obtained from samples in a referral burn hospital in Tehran, Iran. MATERIALS AND METHODS: S. aureus isolates obtained from patients, personnel and surfaces in the wards of a burn hospital were identified and confirmed by biochemical and molecular tests, respectively. The susceptibility of isolates was determined using the disk diffusion method. Virulence factors were detected by multiplex PCR. RESULTS: The frequency of hla, hlb, hld, hlg, tst and pvl genes was 92.8%, 34.7%, 89.8%, 11.9%, 10.7%, and 0.5% respectively. The results revealed that the hla gene had the highest frequency among isolates (94.4% for methicillin-resistant S. aureus (MRSA) and 89.8% for methicillin-susceptible S. aureus (MSSA)). The most prevalent adhesion and biofilm-related gene was eno (85.6%). The prevalence of the remaining genes was as follows: fib (71.8%), clfB (70%), cna (59.2 %), fnbB (17.9%), icaA (72.4%), and icaD (85.6%). The incidence of fib, hlb, hlg, and tst genes was significantly higher in MRSA isolates compare to the MSSA isolates. Moreover, the resistance rates for all antibiotics were higher is MRSA isolates except for nitrofurantoin and chloramphenicol antibiotics. CONCLUSION: Data indicate the high prevalence rates of virulence factors among S. aureus isolates, especially MRSA strains in the burn hospital. This should to be taken into account in the development of an effective infection control policy and continuous monitoring of drug resistance in hospitals.

10.
Infez Med ; 26(4): 329-335, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30555136

ABSTRACT

Wide distrubution of multidrug-resistant Acinetobacter baumannii strains has become a foremost concern in hospital environments. Treatment of infections caused by multidrug resistant strains has conventionally involved the use of ß-lactams such as carbapenems. In this study, we report the distribution of carbapenemase genes in A. baumannii isolated from hospitalized patients. The study was conducted on 110 non-repetitive A. baumannii isolates collected from hospitalized patients, over a nine-month period. Clinical isolates were examined by conventional susceptibility testing, using the disk-diffusion method and multiplex polymerase chain reaction to detect acquired carbapenemase genes. All of the isolates were completely resistant to TOB, SXT, IPM, MEM, CTX, CRO, FEP, CAZ, CIP, PTZ, PIP and were susceptible to colistin, but moderately susceptible TET (2.72%), AK (4.54%) and GEN (3.63%). The prevalence of bla-OXA-51like, bla-OXA-23like, bla-OXA-24like, bla-OXA-58like, blaSIM and blaSPM genes was 100%, 96.36%, 35.45%, 7.27%, 7.27% and 3.63%, respectively. bla-GIM and bla-VIM genes were not detected among the strains. Our results suggest that OXA-type carbapenemase genes plus class B ß-lactamases contribute to carbapenem resistance in the collected isolates. Therefore, quick identification of these resistant genes using molecular approaches is critical in limiting the spread of infections caused by A. baumannii. Drug administration correction of the physicians, based on antibiotic susceptibility testing and more knowledge on the nosocomial infection control policies as essential need.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Bacterial Proteins/classification , Cross-Sectional Studies , DNA, Bacterial/analysis , Humans , Microbial Sensitivity Tests , beta-Lactamases/classification
11.
Anal Biochem ; 548: 96-101, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29501578

ABSTRACT

This paper describes the construction of a silver-based LSPR biosensor for endotoxin detection. We used GLAD method to procure reproducible silver nanocolumns. In this work, the silver nanostructures were considerably stabilized by a SAM of MPA, and the limit of detection of biosensor was measured to be 340 pg/ml for endotoxin E. coli. Considering endotoxin B. abortus as the second type of endotoxin contamination in our target samples (HBs-ag produced in Institute Pasteur, Iran), we investigated selectivity of the biosensor in various experiments. We showed that this biosensor can selectively detect both types of endotoxins compared to other biological species. Overall, this study proposes that LSPR biosensing can be considered as a sensitive, simple, and label-free method for endotoxin detection in the quality control laboratories.


Subject(s)
Biosensing Techniques/methods , Endotoxins/analysis , Escherichia coli/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry
12.
Colloids Surf B Biointerfaces ; 148: 657-664, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27697740

ABSTRACT

The mechanism of adsorption of single and double stranded DNAs on colloidal gold and silver nanoparticles has been studied by measuring the resistance of the nanoparticles, surrounded by various oligonucleotides, against salt induced aggregation. It is shown that both single and double stranded DNAs can be adsorbed on the metal nanoparticles and the adsorption strength is determined by the interaction between various bases of DNA and the nanoparticles. By changing the salt concentration, the difference between adsorption of various DNA strands on the nanoparticles can be specified. The results indicate that a key parameter in success of a sensing assay of DNA hybridization is the salt concentration which should be greater than a minimum threshold depending on the nanoparticles characteristics. We have also investigated the interaction mechanism between various DNA bases with the metal nanoparticles. For both gold and silver nanoparticles, adenine has the highest and thymine has the lowest attachment to the nanoparticles. From surface enhanced Raman spectroscopy (SERS) data of various bases in the presence of gold nanoparticles, the probable interaction points in the bases with the nanoparticles have been determined, which are mainly the nitrogen sites of these oligonucleotides.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Adsorption , Base Sequence , Biosensing Techniques/methods , Oligonucleotides/chemistry , Spectrum Analysis, Raman , Surface Plasmon Resonance , Thymine/chemistry
13.
Colloids Surf B Biointerfaces ; 116: 439-45, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24549045

ABSTRACT

The adsorption of single and double stranded DNA on colloidal silver nanoparticles has been studied to investigate the effects of surface charge of the nanoparticles, the composition of the oligonucleotide and its length on the adsorption characteristics. The results explain that the nanoparticle surface charge is a key parameter determining the propensity of oligonucleotides to adsorb on nanoparticles. The adsorption also depends on the length and composition of oligonucleotide. The protective effects of both single and double stranded DNA against salt-induced aggregation dramatically increase as the DNA length increases. In contrast to other available reports, we observed that long oligonucleotides (single-stranded and double stranded) can well be adsorbed on the nanoparticles as the short ones leading to almost complete protection of nanoparticles against salt induced aggregation and hence are not suitable for the sensing applications. Finally, the light scattering from the Ag nanoparticles has been simulated and the results compared with the experiments. Our understanding should improve development of colorimetric assays for DNA detection based on aggregation of unmodified metallic nanoparticles.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Adsorption , Colloids/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL