Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Med Imaging (Bellingham) ; 11(3): 035501, 2024 May.
Article in English | MEDLINE | ID: mdl-38737494

ABSTRACT

Purpose: The average (fav) or peak (fpeak) noise power spectrum (NPS) frequency is often used as a one-parameter descriptor of the CT noise texture. Our study develops a more complete two-parameter model of the CT NPS and investigates the sensitivity of human observers to changes in it. Approach: A model of CT NPS was created based on its fpeak and a half-Gaussian fit (σ) to the downslope. Two-alternative forced-choice staircase studies were used to determine perceptual thresholds for noise texture, defined as parameter differences with a predetermined level of discrimination performance (80% correct). Five imaging scientist observers performed the forced-choice studies for eight directions in the fpeak/σ-space, for two reference NPSs (corresponding to body and lung kernels). The experiment was repeated with 32 radiologists, each evaluating a single direction in the fpeak/σ-space. NPS differences were quantified by the noise texture contrast (Ctexture), the integral of the absolute NPS difference. Results: The two-parameter NPS model was found to be a good representation of various clinical CT reconstructions. Perception thresholds for fpeak alone are 0.2 lp/cm for body and 0.4 lp/cm for lung NPSs. For σ, these values are 0.15 and 2 lp/cm, respectively. Thresholds change if the other parameter also changes. Different NPSs with the same fpeak or fav can be discriminated. Nonradiologist observers did not need more Ctexture than radiologists. Conclusions: fpeak or fav is insufficient to describe noise texture completely. The discrimination of noise texture changes depending on its frequency content. Radiologists do not discriminate noise texture changes better than nonradiologists.

2.
IEEE Trans Radiat Plasma Med Sci ; 8(4): 439-450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38766558

ABSTRACT

There is an important need for methods to process myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) images acquired at lower-radiation dose and/or acquisition time such that the processed images improve observer performance on the clinical task of detecting perfusion defects compared to low-dose images. To address this need, we build upon concepts from model-observer theory and our understanding of the human visual system to propose a detection task-specific deep-learning-based approach for denoising MPI SPECT images (DEMIST). The approach, while performing denoising, is designed to preserve features that influence observer performance on detection tasks. We objectively evaluated DEMIST on the task of detecting perfusion defects using a retrospective study with anonymized clinical data in patients who underwent MPI studies across two scanners (N = 338). The evaluation was performed at low-dose levels of 6.25%, 12.5%, and 25% and using an anthropomorphic channelized Hotelling observer. Performance was quantified using area under the receiver operating characteristics curve (AUC). Images denoised with DEMIST yielded significantly higher AUC compared to corresponding low-dose images and images denoised with a commonly used task-agnostic deep learning-based denoising method. Similar results were observed with stratified analysis based on patient sex and defect type. Additionally, DEMIST improved visual fidelity of the low-dose images as quantified using root mean squared error and structural similarity index metric. A mathematical analysis revealed that DEMIST preserved features that assist in detection tasks while improving the noise properties, resulting in improved observer performance. The results provide strong evidence for further clinical evaluation of DEMIST to denoise low-count images in MPI SPECT.

3.
Med Phys ; 51(2): 933-945, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154070

ABSTRACT

BACKGROUND: Breast computed tomography (CT) is an emerging breast imaging modality, and ongoing developments aim to improve breast CT's ability to detect microcalcifications. To understand the effects of different parameters on microcalcification detectability, a virtual clinical trial study was conducted using hybrid images and convolutional neural network (CNN)-based model observers. Mathematically generated microcalcifications were embedded into breast CT data sets acquired at our institution, and parameters related to calcification size, calcification contrast, cluster diameter, cluster density, and image display method (i.e., single slices, slice averaging, and maximum-intensity projections) were evaluated for their influence on microcalcification detectability. PURPOSE: To investigate the individual effects and the interplay of parameters affecting microcalcification detectability in breast CT. METHODS: Spherical microcalcifications of varying diameters (0.04, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40 mm) and native intensities were computer simulated to portray the partial volume effects of the imaging system. Calcifications were mathematically embedded into 109 patient breast CT volume data sets as individual calcifications or as clusters of calcifications. Six numbers of calcifications (1, 3, 5, 7, 10, 15) distributed within six cluster diameters (1, 3, 5, 6, 8, 10 mm) were simulated to study the effect of cluster density. To study the role of image display method, 2D regions of interest (ROIs) and 3D volumes of interest (VOIs) were generated using single slice extraction, slice averaging, and maximum-intensity projection (MIP). 2D and 3D CNNs were trained on the ROIs and VOIs, and receiver operating characteristic (ROC) curve analysis was used to evaluate detection performance. The area under the ROC curve (AUC) was used as the primary performance metric. RESULTS: Detection performance decreased with increasing section thickness, and peak detection performance occurred using the native section thickness (0.2 mm) and MIP display. The MIP display method, despite using a single slice, yielded comparable performance to the native section thickness, which employed 50 slices. Reduction in slices did not sacrifice detection accuracy and provided significant computational advantages over multi-slice image volumes. Larger cluster diameters resulted in reduced overall detectability, while smaller cluster diameters led to increased detectability. Additionally, we observed that the presence of more calcifications within a cluster improved the overall detectability, while fewer calcifications decreased it. CONCLUSIONS: As breast CT is still a relatively new breast imaging modality, there is an ongoing need to identify optimal imaging protocols. This work demonstrated the utility of MIP presentation for displaying image volumes containing microcalcification clusters. It is likely that human observers may also benefit from viewing MIPs compared to individual slices. The results of this investigation begin to elucidate how model observers interact with microcalcification clusters in a 3D volume, and will be useful for future studies investigating a broader set of parameters related to breast CT.


Subject(s)
Breast Diseases , Calcinosis , Humans , Mammography/methods , Tomography, X-Ray Computed/methods , Calcinosis/diagnostic imaging , Neural Networks, Computer
4.
J Med Imaging (Bellingham) ; 10(6): 065502, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38074625

ABSTRACT

Purpose: Anatomical "noise" is an important limitation of full-field digital mammography. Understanding its impact on clinical judgments is made difficult by the complexity of breast parenchyma, which results in image texture not fully captured by the power spectrum. While the number of possible parameters for characterizing anatomical noise is quite large, a specific set of local texture statistics has been shown to be visually salient, and human sensitivity to these statistics corresponds to their informativeness in natural scenes. Approach: We evaluate these local texture statistics in addition to standard power-spectral measures to determine whether they have additional explanatory value for radiologists' breast density judgments. We analyzed an image database consisting of 111 disease-free mammographic screening exams (4 views each) acquired at the University of Pittsburgh Medical Center. Each exam had a breast density score assigned by the examining radiologist. Power-spectral descriptors and local image statistics were extracted from images of breast parenchyma. Model-selection criteria and accuracy were used to assess the explanatory and predictive value of local image statistics for breast density judgments. Results: The model selection criteria show that adding local texture statistics to descriptors of the power spectra produce better explanatory and predictive models of radiologists' judgments of breast density. Thus, local texture statistics capture, in some form, non-Gaussian aspects of texture that radiologists are using. Conclusions: Since these local texture statistics are expected to be impacted by imaging factors like modality, dose, and image processing, they suggest avenues for understanding and optimizing observer performance.

5.
Radiology ; 309(1): e222691, 2023 10.
Article in English | MEDLINE | ID: mdl-37874241

ABSTRACT

Background Despite variation in performance characteristics among radiologists, the pairing of radiologists for the double reading of screening mammograms is performed randomly. It is unknown how to optimize pairing to improve screening performance. Purpose To investigate whether radiologist performance characteristics can be used to determine the optimal set of pairs of radiologists to double read screening mammograms for improved accuracy. Materials and Methods This retrospective study was performed with reading outcomes from breast cancer screening programs in Sweden (2008-2015), England (2012-2014), and Norway (2004-2018). Cancer detection rates (CDRs) and abnormal interpretation rates (AIRs) were calculated, with AIR defined as either reader flagging an examination as abnormal. Individual readers were divided into performance categories based on their high and low CDR and AIR. The performance of individuals determined the classification of pairs. Random pair performance, for which any type of pair was equally represented, was compared with the performance of specific pairing strategies, which consisted of pairs of readers who were either opposite or similar in AIR and/or CDR. Results Based on a minimum number of examinations per reader and per pair, the final study sample consisted of 3 592 414 examinations (Sweden, n = 965 263; England, n = 837 048; Norway, n = 1 790 103). The overall AIRs and CDRs for all specific pairing strategies (Sweden AIR range, 45.5-56.9 per 1000 examinations and CDR range, 3.1-3.6 per 1000; England AIR range, 68.2-70.5 per 1000 and CDR range, 8.9-9.4 per 1000; Norway AIR range, 81.6-88.1 per 1000 and CDR range, 6.1-6.8 per 1000) were not significantly different from the random pairing strategy (Sweden AIR, 54.1 per 1000 examinations and CDR, 3.3 per 1000; England AIR, 69.3 per 1000 and CDR, 9.1 per 1000; Norway AIR, 84.1 per 1000 and CDR, 6.3 per 1000). Conclusion Pairing a set of readers based on different pairing strategies did not show a significant difference in screening performance when compared with random pairing. © RSNA, 2023.


Subject(s)
Mammography , Physical Examination , Humans , Retrospective Studies , England , Radiologists
6.
Med Phys ; 50(12): 7558-7567, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37646463

ABSTRACT

BACKGROUND: Mathematical model observers have been shown to reasonably predict human observer performance and are useful when human observer studies are infeasible. Recently, convolutional neural networks (CNNs) have also been used as substitutes for human observers, and studies have shown their utility as an optimal observer. In this study, a CNN model observer is compared to the pre-whitened matched filter (PWMF) model observer in detecting simulated mass lesions inserted into 253 acquired breast computed tomography (bCT) images from patients imaged at our institution. PURPOSE: To compare CNN and PWMF model observers for detecting signal-known-exactly (SKE) location-known-exactly (LKE) simulated lesions in bCT images with real anatomical backgrounds, and to use these model observers collectively to optimize parameters and understand trends in performance with breast CT. METHODS: Spherical lesions with different diameters (1, 3, 5, 9 mm) were mathematically inserted into reconstructed patient bCT image data sets to mimic 3D mass lesions in the breast. 2D images were generated by extracting the center slice along the axial dimension or by slice averaging across adjacent slices to model thicker sections (0.4, 1.2, 2.0, 6.0, 12.4, 20.4 mm). The role of breast density was retrospectively studied using the range of breast densities intrinsic to the patient bCT data sets. In addition, mass lesions were mathematically inserted into Gaussian images matched to the mean and noise power spectrum of the bCT images to better understand the performance of the CNN in the context of a known ideal observer (the PWMF). The simulated Gaussian and bCT images were divided into training and testing data sets. Each training data set consisted of 91 600 images, and each testing data set consisted of 96 000 images. A CNN and PWMF was trained on the Gaussian training images, and a different CNN and PWMF was trained on the bCT training images. The trained model observers were tested, and receiver operating characteristic (ROC) curve analysis was used to evaluate detection performance. The area under the ROC curve (AUC) was the primary performance metric used to compare the model observers. RESULTS: In the Gaussian background, the CNN performed essentially identically to the PWMF across lesion sizes and section thicknesses. In the bCT background, the CNN outperformed the PWMF across lesion size, breast density, and most section thicknesses. These findings suggest that there are higher-order features in bCT images that are harnessed by the CNN observer but are inaccessible to the PWMF. CONCLUSIONS: The CNN performed equivalently to the ideal observer in Gaussian textures. In bCT background, the CNN captures more diagnostic information than the PWMF and may be a more pertinent observer when conducting optimal performance studies in breast CT images.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Retrospective Studies , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Breast/diagnostic imaging
7.
Med Phys ; 50(11): 6748-6761, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37639329

ABSTRACT

BACKGROUND: The use of iodine-based contrast agent for better delineation of tumors in breast CT (bCT) has been shown to be compelling, similar to the tumor enhancement in contrast-enhanced breast MRI. Contrast-enhanced bCT (CE-bCT) is a relatively new tool, and a structured evaluation of different imaging parameters at play has yet to be conducted. In this investigation, data sets of acquired bCT images from 253 patients imaged at our institution were used in concert with simulated mathematically inserted spherical contrast-enhanced lesions to study the role of contrast enhancement on detectability. PURPOSE: To quantitatively evaluate the improvement in lesion detectability due to contrast enhancement across lesion diameter, section thickness, view plane, and breast density using a pre-whitened matched filter (PWMF) model observer. METHODS: The relationship between iodine concentration and Hounsfield units (HU) was measured using spectral modeling. The lesion enhancement from clinical CE-bCT images in 22 patients was evaluated, and the average contrast enhancement (ΔHU) was determined. Mathematically generated spherical mass lesions of varying diameters (1, 3, 5, 9, 11, 15 mm) and contrast enhancement levels (0, 0.25, 0.50, 0.75, 1) were inserted at random locations in 253 actual patient bCT datasets. Images with varying thicknesses (0.4-19.8 mm) were generated by slice averaging, and the role of view plane (coronal and axial planes) was studied. A PWMF was used to generate receiver operating characteristic (ROC) curves across parameters of lesion diameter, contrast enhancement, section thickness, view plane, and breast density. The area under the ROC curve (AUC) was used as the primary performance metric, generated from over 90,000 simulated lesions. RESULTS: An average 20% improvement (ΔAUC = 0.1) in lesion detectability due to contrast enhancement was observed across lesion diameter, section thickness, breast density, and view plane. A larger improvement was observed when stratifying patients based on breast density. For patients with VGF ≤ 40%, detection performance improved up to 20% (until AUC →1), and for patients with denser breasts (VGF > 40%), detection performance improved more drastically, ranging from 20% to 80% for 1- and 5-mm lesions. For the 1 mm lesion, detection performance raised slightly at the 1.2 mm section thickness before falling off as thickness increased. For larger lesions, detection performance was generally unaffected as section thickness increased up until it reached 5.8 mm, where performance began to decline. Detection performance was higher in the axial plane compared to the coronal plane for smaller lesions and thicker sections. CONCLUSIONS: For emerging diagnostic tools like CE-bCT, it is important to optimize imaging protocols for lesion detection. In this study, we found that intravenous contrast can be used to detect small lesions in dense breasts. Optimal section thickness for detectability has dependencies on breast density and lesion size, therefore, display thickness should be adjusted in real-time using display software. These findings may be useful for the development of CE-bCT as well as other x-ray-based breast imaging modalities.


Subject(s)
Iodine , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Breast/diagnostic imaging , Breast/pathology , Imaging, Three-Dimensional/methods , Mammography/methods , Phantoms, Imaging
8.
ArXiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37332570

ABSTRACT

There is an important need for methods to process myocardial perfusion imaging (MPI) SPECT images acquired at lower radiation dose and/or acquisition time such that the processed images improve observer performance on the clinical task of detecting perfusion defects. To address this need, we build upon concepts from model-observer theory and our understanding of the human visual system to propose a Detection task-specific deep-learning-based approach for denoising MPI SPECT images (DEMIST). The approach, while performing denoising, is designed to preserve features that influence observer performance on detection tasks. We objectively evaluated DEMIST on the task of detecting perfusion defects using a retrospective study with anonymized clinical data in patients who underwent MPI studies across two scanners (N = 338). The evaluation was performed at low-dose levels of 6.25%, 12.5% and 25% and using an anthropomorphic channelized Hotelling observer. Performance was quantified using area under the receiver operating characteristics curve (AUC). Images denoised with DEMIST yielded significantly higher AUC compared to corresponding low-dose images and images denoised with a commonly used task-agnostic DL-based denoising method. Similar results were observed with stratified analysis based on patient sex and defect type. Additionally, DEMIST improved visual fidelity of the low-dose images as quantified using root mean squared error and structural similarity index metric. A mathematical analysis revealed that DEMIST preserved features that assist in detection tasks while improving the noise properties, resulting in improved observer performance. The results provide strong evidence for further clinical evaluation of DEMIST to denoise low-count images in MPI SPECT.

9.
Article in English | MEDLINE | ID: mdl-37274423

ABSTRACT

Attenuation compensation (AC) is beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). However, traditional AC methods require the availability of a transmission scan, most often a CT scan. This approach has the disadvantage of increased radiation dose, increased scanner costs, and the possibility of inaccurate diagnosis in cases of misregistration between the SPECT and CT images. Further, many SPECT systems do not include a CT component. To address these issues, we developed a Scatter-window projection and deep Learning-based AC (SLAC) method to perform AC without a separate transmission scan. To investigate the clinical efficacy of this method, we then objectively evaluated the performance of this method on the clinical task of detecting perfusion defects on MPI in a retrospective study with anonymized clinical SPECT/CT stress MPI images. The proposed method was compared with CT-based AC (CTAC) and no-AC (NAC) methods. Our results showed that the SLAC method yielded an almost overlapping receiver operating characteristic (ROC) plot and a similar area under the ROC (AUC) to the CTAC method on this task. These results demonstrate the capability of the SLAC method for transmission-less AC in SPECT and motivate further clinical evaluation.

10.
J Med Imaging (Bellingham) ; 10(Suppl 1): S11909, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37114188

ABSTRACT

Purpose: Radiologists and other image readers spend prolonged periods inspecting medical images. The visual system can rapidly adapt or adjust sensitivity to the images that an observer is currently viewing, and previous studies have demonstrated that this can lead to pronounced changes in the perception of mammogram images. We compared these adaptation effects for images from different imaging modalities to explore both general and modality-specific consequences of adaptation in medical image perception. Approach: We measured perceptual changes induced by adaptation to images acquired by digital mammography (DM) or digital breast tomosynthesis (DBT), which have both similar and distinct textural properties. Participants (nonradiologists) adapted to images from the same patient acquired from each modality or for different patients with American College of Radiology-Breast Imaging Reporting and Data System (BI-RADS) classification of dense or fatty tissue. The participants then judged the appearance of composite images formed by blending the two adapting images (i.e., DM versus DBT or dense versus fatty in each modality). Results: Adaptation to either modality produced similar significant shifts in the perception of dense and fatty textures, reducing the salience of the adapted component in the test images. In side-by-side judgments, a modality-specific adaptation effect was not observed. However, when the images were directly fixated during adaptation and testing, so that the textural differences between the modalities were more visible, significantly different changes in the sensitivity to the noise in the images were observed. Conclusions: These results confirm that observers can readily adapt to the visual properties or spatial textures of medical images in ways that can bias their perception of the images, and that adaptation can also be selective for the distinctive visual features of images acquired by different modalities.

11.
IEEE Trans Med Imaging ; 42(8): 2176-2188, 2023 08.
Article in English | MEDLINE | ID: mdl-37027767

ABSTRACT

Current medical imaging increasingly relies on 3D volumetric data making it difficult for radiologists to thoroughly search all regions of the volume. In some applications (e.g., Digital Breast Tomosynthesis), the volumetric data is typically paired with a synthesized 2D image (2D-S) generated from the corresponding 3D volume. We investigate how this image pairing affects the search for spatially large and small signals. Observers searched for these signals in 3D volumes, 2D-S images, and while viewing both. We hypothesize that lower spatial acuity in the observers' visual periphery hinders the search for the small signals in the 3D images. However, the inclusion of the 2D-S guides eye movements to suspicious locations, improving the observer's ability to find the signals in 3D. Behavioral results show that the 2D-S, used as an adjunct to the volumetric data, improves the localization and detection of the small (but not large) signal compared to 3D alone. There is a concomitant reduction in search errors as well. To understand this process at a computational level, we implement a Foveated Search Model (FSM) that executes human eye movements and then processes points in the image with varying spatial detail based on their eccentricity from fixations. The FSM predicts human performance for both signals and captures the reduction in search errors when the 2D-S supplements the 3D search. Our experimental and modeling results delineate the utility of 2D-S in 3D search-reduce the detrimental impact of low-resolution peripheral processing by guiding attention to regions of interest, effectively reducing errors.


Subject(s)
Imaging, Three-Dimensional , Mammography , Humans , Mammography/methods , Imaging, Three-Dimensional/methods
12.
Med Phys ; 50(7): 4151-4172, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37057360

ABSTRACT

BACKGROUND: This study reports the results of a set of discrimination experiments using simulated images that represent the appearance of subtle lesions in low-dose computed tomography (CT) of the lungs. Noise in these images has a characteristic ramp-spectrum before apodization by noise control filters. We consider three specific diagnostic features that determine whether a lesion is considered malignant or benign, two system-resolution levels, and four apodization levels for a total of 24 experimental conditions. PURPOSE: The goal of the investigation is to better understand how well human observers perform subtle discrimination tasks like these, and the mechanisms of that performance. We use a forced-choice psychophysical paradigm to estimate observer efficiency and classification images. These measures quantify how effectively subjects can read the images, and how they use images to perform discrimination tasks across the different imaging conditions. MATERIALS AND METHODS: The simulated CT images used as stimuli in the psychophysical experiments are generated from high-resolution objects passed through a modulation transfer function (MTF) before down-sampling to the image-pixel grid. Acquisition noise is then added with a ramp noise-power spectrum (NPS), with subsequent smoothing through apodization filters. The features considered are lesion size, indistinct lesion boundary, and a nonuniform lesion interior. System resolution is implemented by an MTF with resolution (10% max.) of 0.47 or 0.58 cyc/mm. Apodization is implemented by a Shepp-Logan filter (Sinc profile) with various cutoffs. Six medically naïve subjects participated in the psychophysical studies, entailing training and testing components for each condition. Training consisted of staircase procedures to find the 80% correct threshold for each subject, and testing involved 2000 psychophysical trials at the threshold value for each subject. Human-observer performance is compared to the Ideal Observer to generate estimates of task efficiency. The significance of imaging factors is assessed using ANOVA. Classification images are used to estimate the linear template weights used by subjects to perform these tasks. Classification-image spectra are used to analyze subject weights in the spatial-frequency domain. RESULTS: Overall, average observer efficiency is relatively low in these experiments (10%-40%) relative to detection and localization studies reported previously. We find significant effects for feature type and apodization level on observer efficiency. Somewhat surprisingly, system resolution is not a significant factor. Efficiency effects of the different features appear to be well explained by the profile of the linear templates in the classification images. Increasingly strong apodization is found to both increase the classification-image weights and to increase the mean-frequency of the classification-image spectra. A secondary analysis of "Unapodized" classification images shows that this is largely due to observers undoing (inverting) the effects of apodization filters. CONCLUSIONS: These studies demonstrate that human observers can be relatively inefficient at feature-discrimination tasks in ramp-spectrum noise. Observers appear to be adapting to frequency suppression implemented in apodization filters, but there are residual effects that are not explained by spatial weighting patterns. The studies also suggest that the mechanisms for improving performance through the application of noise-control filters may require further investigation.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Algorithms
13.
ArXiv ; 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36911280

ABSTRACT

Attenuation compensation (AC) is beneficial for visual interpretation tasks in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). However, traditional AC methods require the availability of a transmission scan, most often a CT scan. This approach has the disadvantages of increased radiation dose, increased scanner cost, and the possibility of inaccurate diagnosis in cases of misregistration between the SPECT and CT images. Further, many SPECT systems do not include a CT component. To address these issues, we developed a Scatter-window projection and deep Learning-based AC (SLAC) method to perform AC without a separate transmission scan. To investigate the clinical efficacy of this method, we then objectively evaluated the performance of this method on the clinical task of detecting perfusion defects on MPI in a retrospective study with anonymized clinical SPECT/CT stress MPI images. The proposed method was compared with CT-based AC (CTAC) and no-AC (NAC) methods. Our results showed that the SLAC method yielded an almost overlapping receiver operating characteristic (ROC) plot and a similar area under the ROC (AUC) to the CTAC method on this task. These results demonstrate the capability of the SLAC method for transmission-less AC in SPECT and motivate further clinical evaluation.

14.
Ultrasound Med Biol ; 49(6): 1465-1475, 2023 06.
Article in English | MEDLINE | ID: mdl-36967332

ABSTRACT

OBJECTIVE: The aim of this work was to evaluate the reliability of power Doppler ultrasound (PD-US) measurements made without contrast enhancement to monitor temporal changes in peripheral blood perfusion. METHODS: On the basis of pre-clinical rodent studies, we found that combinations of spatial registration and clutter filtering techniques applied to PD-US signals reproducibly tracked blood perfusion in skeletal muscle. Perfusion is monitored while modulating hindlimb blood flow. First, in invasive studies, PD-US measurements in deep muscle with laser speckle contrast imaging (LSCI) of superficial tissues made before, during and after short-term arterial clamping were compared. Then, in non-invasive studies, a pressure cuff was employed to generate longer-duration hindlimb ischemia. Here, B-mode imaging was also applied to measure flow-mediated dilation of the femoral artery while, simultaneously, PD-US was used to monitor downstream muscle perfusion to quantify reactive hyperemia. Measurements in adult male and female mice and rats, some with exercise conditioning, were included to explore biological variables. RESULTS: PD-US methods are validated through comparisons with LSCI measurements. As expected, no significant differences were found between sexes or fitness levels in flow-mediated dilation or reactive hyperemia estimates, although post-ischemic perfusion was enhanced with exercise conditioning, suggesting there could be differences between the hyperemic responses of conduit and resistive vessels. CONCLUSION: Overall, we found non-contrast PD-US imaging can reliably monitor relative spatiotemporal changes in muscle perfusion. This study supports the development of PD-US methods for monitoring perfusion changes in patients at risk for peripheral artery disease.


Subject(s)
Hyperemia , Male , Female , Rats , Mice , Animals , Rodentia , Reproducibility of Results , Blood Flow Velocity , Muscle, Skeletal , Ischemia/diagnostic imaging , Ultrasonography, Doppler , Femoral Artery/diagnostic imaging , Dilatation, Pathologic , Perfusion , Regional Blood Flow
15.
Med Phys ; 50(4): 2037-2048, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36583447

ABSTRACT

BACKGROUND: Accurate detection and grading of atheromatous stenotic lesions within the cardiac, renal, and intracranial vasculature is imperative for early recognition of disease and guiding treatment strategies. PURPOSE: In this work, a stenotic lesion phantom was used to compare high resolution and normal resolution modes on the same CT scanner in terms of detection and size discrimination performance. MATERIALS AND METHODS: The phantom is comprised of three acrylic cylinders (each 15.0 cm in diameter and 1.3 cm thick) with a matching array of holes in each module. The outer two modules contain holes that are slightly larger than the corresponding hole in the central module to simulate stenotic narrowing in vasculature. The stack of modules was submerged in an iodine solution simulating contrast-enhanced stenotic lesions with a range of lumen diameters (1.32-10.08 mm) and stenosis severity (0%, 50%, 60%, 70%, and 80%). The phantom was imaged on the Canon Aquilion Precision high-resolution CT scanner in high-resolution (HR) mode (0.25 mm × 0.50 mm detector element size) and normal-resolution (NR) mode (0.50 mm × 0.50 mm) using 120 kV and two dose levels (14 and 21 mGy SSDE) with 30 repeat scans acquired for each combination. Filtered back-projection (FBP) and a hybrid-iterative reconstruction (AIDR) were used with the FC18 kernel, as well as a deep learning algorithm (AiCE) which is only available for HR. A non-prewhitening model observer with an eye filter was implemented to quantify performance for detection and size discrimination tasks in the axial plane. RESULTS: Detection performance improved with increasing diameter, dose, and for AIDR in comparison to FBP for a fixed resolution mode. Performance in the HR mode was generally higher than NR for the smaller lumen diameters (1-5 mm) with decreasing differences as the diameter increased. Performance in NR mode surpassed HR mode for lumen diameters greater than ∼4 mm and ∼5 mm for 14 mGy and 21 mGy, respectively. AiCE provided consistently higher detection performance compared with AIDR-FC18 (48% higher for a 6 mm lumen diameter). Discrimination performance increased with increasing nominal diameter, dose, and for larger differences in stenosis severity. When comparing discrimination performance in HR to NR modes, the largest relative differences occur at the smallest nominal diameters and smallest differences in stenosis severity. The AiCE reconstruction algorithm produced the highest overall discrimination performance values, and these were significantly higher than AIDR-FC18 for nominal diameters of 7.14 and 10.08 mm. CONCLUSIONS: HR mode outperforms NR for detection up to a specific diameter and the results improve with AiCE and for higher dose levels. For the task of size discrimination, HR mode consistently outperforms NR if AIDR-FC18 is used for dose levels of at least 21 mGy, and the results improve with AiCE and for the smallest differences in stenosis severity investigated (50% vs. 60%). High-resolution CT appears to be beneficial for detecting smaller simulated lumen diameters (<5 mm) and is generally advantageous for discrimination tasks related to stenotic lesions, which inherently contain information at higher frequencies, given the right reconstruction algorithm and dose level.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Humans , Constriction, Pathologic/diagnostic imaging , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Phantoms, Imaging , Radiation Dosage
16.
Article in English | MEDLINE | ID: mdl-36191097

ABSTRACT

Power-Doppler ultrasonic (PD-US) imaging is sensitive to echoes from blood cell motion in the microvasculature but generally nonspecific because of difficulties with filtering nonblood-echo sources. We are studying the potential for using PD-US imaging for routine assessments of peripheral blood perfusion without contrast media. The strategy developed is based on an experimentally verified computational model of tissue perfusion that simulates typical in vivo conditions. The model considers directed and diffuse blood perfusion states in a field of moving clutter and noise. A spatial registration method is applied to minimize tissue motion prior to clutter and noise filtering. The results show that in-plane clutter motion is effectively minimized. While out-of-plane motion remains a strong source of clutter-filter leakage, those registration errors are readily minimized by straightforward modification of scanning techniques and spatial averaging.


Subject(s)
Signal Processing, Computer-Assisted , Ultrasonography, Doppler , Blood Flow Velocity , Ultrasonography, Doppler/methods , Ultrasonography/methods , Perfusion , Phantoms, Imaging
17.
Eur Radiol ; 32(11): 7463-7469, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35482123

ABSTRACT

The magnitude of the tradeoff between recall rate (RR) and cancer detection rate (CDR) in breast-cancer screening is not clear, and it is expected to depend on target population and screening program characteristics. Multi-reader multi-case research studies, which may be used to estimate this tradeoff, rely on enriched datasets with artificially high prevalence rates, which may bias the results. Furthermore, readers participating in research studies are subject to "laboratory" effects, which can alter their performance relative to actual practice. The Recall and detection Of breast Cancer in Screening (ROCS) trial uses a novel data acquisition system that minimizes these limitations while obtaining an estimate of the RR-CDR curve during actual practice in the Dutch National Breast Cancer Screening Program. ROCS involves collection of at least 40,000 probability-of-malignancy ratings from at least 20 radiologists during interpretation of approximately 2,000 digital mammography screening cases each. With the use of custom-built software on a tablet, and a webcam, this data was obtained in the usual reading environment with minimal workflow disruption and without electronic access to the review workstation software. Comparison of the results to short- and medium-term follow-up allows for estimation of the RR-CDR and receiver operating characteristics curves, respectively. The anticipated result of the study is that performance-based evidence from practice will be available to determine the optimal operating point for breast-cancer screening. In addition, this data will be useful as a benchmark when evaluating the impact of potential new screening technologies, such as digital breast tomosynthesis or artificial intelligence. KEY POINTS: • The ROCS trial aims to estimate the recall rate-cancer detection rate curve during actual screening practice in the Dutch National Breast Cancer Screening Program. • The study design is aimed at avoiding the influence of the "laboratory effect" in usual observer performance studies. • The use of a tablet and a webcam allows for the acquisition of probability of malignancy ratings without access to the review workstation software.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Female , Humans , Artificial Intelligence , Breast Neoplasms/pathology , Early Detection of Cancer/methods , Mammography/methods , Mass Screening/methods
18.
Proc Biol Sci ; 289(1970): 20220026, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35259990

ABSTRACT

Odour cues associated with shifts in ovarian hormones indicate ovulatory timing in females of many nonhuman species. Although prior evidence supports women's body odours smelling more attractive on days when conception is possible, that research has left ambiguous how diagnostic of ovulatory timing odour cues are, as well as whether shifts in odour attractiveness are correlated with shifts in ovarian hormones. Here, 46 women each provided six overnight scent and corresponding day saliva samples spaced five days apart, and completed luteinizing hormone tests to determine ovulatory timing. Scent samples collected near ovulation were rated more attractive, on average, relative to samples from the same women collected on other days. Importantly, however, signal detection analyses showed that rater discrimination of fertile window timing from odour attractiveness ratings was very poor. Within-women shifts in salivary oestradiol and progesterone were not significantly associated with within-women shifts in odour attractiveness. Between-women, mean oestradiol was positively associated with mean odour attractiveness. Our findings suggest that raters cannot reliably detect women's ovulatory timing from their scent attractiveness. The between-women effect of oestradiol raises the possibility that women's scents provide information about overall cycle fecundity, though further research is necessary to rigorously investigate this possibility.


Subject(s)
Menstrual Cycle , Odorants , Estradiol , Female , Humans , Male , Ovulation , Pheromones , Progesterone , Sexual Behavior , Signal Detection, Psychological
19.
Acad Radiol ; 29(6): 841-850, 2022 06.
Article in English | MEDLINE | ID: mdl-34563442

ABSTRACT

RATIONALE AND OBJECTIVES: To quantitatively compare breast parenchymal texture between two Digital Breast Tomosynthesis (DBT) vendors using images from the same patients. MATERIALS AND METHODS: This retrospective study included consecutive patients who had normal screening DBT exams performed in January 2018 from GE and normal screening DBT exams in adjacent years from Hologic. Power spectrum analysis was performed within the breast tissue region. The slope of a linear function between log-frequency and log-power, ß, was derived as a quantitative measure of breast texture and compared within and across vendors along with secondary parameters (laterality, view, year, image format, and breast density) with correlation tests and t-tests. RESULTS: A total of 24,339 DBT slices or synthetic 2D images from 85 exams in 25 women were analyzed. Strong power-law behavior was verified from all images. Values of ß d did not differ significantly for laterality, view, or year. Significant differences of ß were observed across vendors for DBT images (Hologic: 3.4±0.2 vs GE: 3.1±0.2, 95% CI on difference: 0.27 to 0.30) and synthetic 2D images (Hologic: 2.7±0.3 vs GE: 3.0±0.2, 95% CI on difference: -0.36 to -0.27), and density groups with each vendor: scattered (GE: 3.0±0.3, Hologic: 3.3±0.3) vs. heterogeneous (GE: 3.2±0.2, Hologic: 3.4±0.1), 95% CI (-0.27, -0.08) and (-0.21, -0.05), respectively. CONCLUSION: There are quantitative differences in the presentation of breast imaging texture between DBT vendors and across breast density categories. Our findings have relevance and importance for development and optimization of AI algorithms related to breast density assessment and cancer detection.


Subject(s)
Breast Neoplasms , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Male , Mammography/methods , Mass Screening , Retrospective Studies , Spectrum Analysis
20.
Article in English | MEDLINE | ID: mdl-37051612

ABSTRACT

Printed phantoms hold great potential as a tool for examining task-based image quality of x-ray imaging systems. Their ability to produce complex shapes rendered in materials with adjustable attenuation coefficients allows a new level of flexibility in the design of tasks for the evaluation of physical imaging systems. We investigate performance in a fine "boundary discrimination" task in which fine features at the margin of a clearly visible "lesion" are used to classify the lesion as malignant or benign. These tasks are appealing because of their relevance to clinical tasks, and because they typically emphasize higher spatial frequencies relative to more common lesion detection tasks. A 3D printed phantom containing cylindrical shells of varying thickness was used to generate lesions profiles that differed in their edge profiles. This was intended to approximate lesions with indistinct margins that are clinically associated with malignancy. Wall thickness in the phantom ranged from 0.4mm to 0.8mm, which allows for task difficulty to be varied by choosing different thicknesses to represent malignant and benign lesions. The phantom was immersed in a tub filled with water and potassium phosphate to approximate the attenuating background, and imaged repeatedly on a benchtop cone-beam CT scanner. After preparing the image data (reconstruction, ROI Selection, sub-pixel registration), we find that the mean frequency of the lesion profile is 0.11 cyc/mm. The mean frequency of the lesion-difference profile, representative of the discrimination task, is approximately 6 times larger. Model observers show appropriate dose performance in these tasks as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...