Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826335

ABSTRACT

Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [ Solanum lycopersicum ]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses. Importance: Fusarium oxysporum is a cross-kingdom fungal pathogen that infects both plants and animals. In addition to causing many devastating wilt diseases, this group of organisms was recently recognized by the World Health Organization as a high-priority threat to human health. Climate change has increased the risk of Fusarium infections, as Fusarium strains are highly adaptable to changing environments. Deciphering fungal adaptation mechanisms is crucial to developing appropriate control strategies. We performed a comparative analysis of Fusarium strains using an animal (mouse) and plant (tomato) host and in vitro conditions that mimic abiotic stress. We also performed comparative genomics analyses to highlight the genetic differences between human and plant pathogens and correlate their phenotypic and genotypic variations. We uncovered important functional hubs shared by plant and human pathogens, such as chromatin modification, transcriptional regulation, and signal transduction, which could be used to identify novel antifungal targets.

2.
Nat Commun ; 14(1): 5832, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730693

ABSTRACT

Macrophages infected with Gram-negative bacteria expressing Type III secretion system (T3SS) activate the NLRC4 inflammasome, resulting in Gasdermin D (GSDMD)-dependent, but GSDME independent IL-1ß secretion and pyroptosis. Here we examine inflammasome signaling in neutrophils infected with Pseudomonas aeruginosa strain PAO1 that expresses the T3SS effectors ExoS and ExoT. IL-1ß secretion by neutrophils requires the T3SS needle and translocon proteins and GSDMD. In macrophages, PAO1 and mutants lacking ExoS and ExoT (ΔexoST) require NLRC4 for IL-1ß secretion. While IL-1ß release from ΔexoST infected neutrophils is also NLRC4-dependent, infection with PAO1 is instead NLRP3-dependent and driven by the ADP ribosyl transferase activity of ExoS. Genetic and pharmacologic approaches using MCC950 reveal that NLRP3 is also essential for bacterial killing and disease severity in a murine model of P. aeruginosa corneal infection (keratitis). Overall, these findings reveal a function for ExoS ADPRT in regulating inflammasome subtype usage in neutrophils versus macrophages and an unexpected role for NLRP3 in P. aeruginosa keratitis.


Subject(s)
Corneal Diseases , Pseudomonas aeruginosa , Animals , Mice , Inflammasomes , Neutrophils , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Patient Acuity
3.
Semin Immunol ; 67: 101753, 2023 05.
Article in English | MEDLINE | ID: mdl-37060806

ABSTRACT

Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.


Subject(s)
Fusarium , Keratitis , Humans , Fungi , Cornea/microbiology , Cornea/pathology , Keratitis/microbiology , Keratitis/pathology , Fusarium/physiology , Neutrophils
4.
J Immunol ; 209(3): 548-558, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35851538

ABSTRACT

Pseudomonas aeruginosa is an important cause of dermal, pulmonary, and ocular disease. Our studies have focused on P. aeruginosa infections of the cornea (keratitis) as a major cause of blinding microbial infections. The infection leads to an influx of innate immune cells, with neutrophils making up to 90% of recruited cells during early stages. We previously reported that the proinflammatory cytokines IL-1α and IL-1ß were elevated during infection. Compared with wild-type (WT), infected Il1b-/- mice developed more severe corneal disease that is associated with impaired bacterial killing as a result of defective neutrophil recruitment. We also reported that neutrophils are an important source of IL-1α and IL-1ß, which peaked at 24 h postinfection. To examine the role of IL-1α compared with IL-1ß in P. aeruginosa keratitis, we inoculated corneas of C57BL/6 (WT), Il1a-/-, Il1b-/-, and Il1a-/-Il1b-/- (double-knockout) mice with 5 × 104 ExoS-expressing P. aeruginosa. Il1b-/- and double-knockout mice have significantly higher bacterial burden that was consistent with delayed neutrophil and monocyte recruitment to the corneas. Surprisingly, Il1a-/- mice had the opposite phenotype with enhanced bacteria clearance compared with WT mice. Although there were no significant differences in neutrophil recruitment, Il1a-/- neutrophils displayed a more proinflammatory transcriptomic profile compared to WT with elevations in C1q expression that likely caused the phenotypic differences observed. To our knowledge, our findings identify a novel, non-redundant role for IL-1α in impairing bacterial clearance.

6.
Eur J Immunol ; 49(6): 918-927, 2019 06.
Article in English | MEDLINE | ID: mdl-30903663

ABSTRACT

Aspergillus fumigatus is an important cause of pulmonary and systemic infections in immune compromised individuals, and of corneal ulcers and blindness in immune competent patients. To examine the role of chitin synthases in Aspergillus corneal infection, we analyzed Aspergillus mutants of chitin synthase family 1 and family 2, and found that compared with the parent strain, the quadruple mutants from both families were more readily killed by neutrophils in vitro, and that both also exhibited impaired hyphal growth in the cornea. Further, inhibition of chitin synthases using Nikkomycin Z enhanced neutrophil killing in vitro and in vivo in a murine model of A. fumigatus corneal infection. Acidic mammalian chitinase (AMCase) is mostly produced by macrophages in asthmatic lungs; however, we now demonstrate that neutrophils are a major source of AMCase, which inhibits hyphal growth. In A. fumigatus corneal infection, neutrophils are the major source of AMCase, and addition of AMCase inhibitors or adoptive transfer of neutrophils from AMCase-/- mice resulted in impaired hyphal killing. Together, these findings identify chitin synthases as important fungal virulence factors and neutrophil-derived AMCase as an essential mediator of host defense.


Subject(s)
Aspergillosis/immunology , Chitin Synthase/immunology , Chitinases/metabolism , Keratitis/immunology , Neutrophils/immunology , Animals , Aspergillus fumigatus/immunology , Aspergillus fumigatus/pathogenicity , Chitin Synthase/biosynthesis , Humans , Keratitis/metabolism , Keratitis/microbiology , Mice, Inbred C57BL , Neutrophils/enzymology , Virulence
7.
NPJ Regen Med ; 3: 23, 2018.
Article in English | MEDLINE | ID: mdl-30588331

ABSTRACT

Disorganization of the transparent collagenous matrix in the cornea, as a consequence of a variety of infections and inflammatory conditions, leads to corneal opacity and sight-loss. Such corneal opacities are a leading cause of blindness, according to the WHO. Public health programs target prevention of corneal scarring, but the only curative treatment of established scarring is through transplantation. Although attempts to minimize corneal scarring through aggressive control of infection and inflammation are made, there has been little progress in the development of anti-scarring therapies. This is owing to eye drop formulations using low viscosity or weak gelling materials having short retention times on the ocular surface. In this study, we report an innovative eye drop formulation that has the ability to provide sustained delivery of decorin, an anti-scarring agent. The novelty of this eye drop lies in the method of structuring during manufacture, which creates a material that can transition between solid and liquid states, allowing retention in a dynamic environment being slowly removed through blinking. In a murine model of Pseudomonas keratitis, applying the eye drop resulted in reductions of corneal opacity within 16 days. More remarkably, the addition of hrDecorin resulted in restoration of corneal epithelial integrity with minimal stromal opacity endorsed by reduced α-smooth muscle actin (αSMA), fibronectin, and laminin levels. We believe that this drug delivery system is an ideal non-invasive anti-fibrotic treatment for patients with microbial keratitis, potentially without recourse to surgery, saving the sight of many in the developing world, where corneal transplantation may not be available.

8.
J Immunol ; 201(9): 2767-2775, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30266768

ABSTRACT

Neutrophils are an important source of IL-1ß secretion in bacterial infections, where they infiltrate affected tissues in log-fold higher numbers than macrophages. Neutrophils also have functional NLRP3 and NLRC4 inflammasomes that can process pro-IL-1ß to the bioactive 17-kDa form. In the current study, we examined the role of IL-1ß in response to corneal infection with the filamentous fungus Aspergillus fumigatus and found that neutrophils were the predominant source of bioactive IL-1ß in the cornea. We also observed that caspase-11-/- mice exhibit the same susceptibility phenotype as IL-1ß-/-, ASC-/-, NLRP3-/-, and caspase-1-/- mice, with impaired neutrophil recruitment to infected corneas and increased hyphal growth. We further demonstrate that caspase-11 is required for caspase-1 activation and IL-1ß processing during infection. In vitro, we show that caspase-11 is regulated by the common type I IFN receptor (IFNAR) through JAK-STAT signaling and that caspase-11 is required for speck formation and caspase-1 activity. Aspergillus spores (conidia) stimulate IL-1ß processing and secretion in neutrophils activation of Dectin-1 and signaling through the Raf1 kinase/MEKK rather than the spleen tyrosine kinase pathway. Collectively, these findings reveal unexpected regulation of IL-1ß production by neutrophils in response to pathogenic fungi.


Subject(s)
Aspergillosis/immunology , Caspase 1/metabolism , Caspases/metabolism , Interleukin-1beta/biosynthesis , Neutrophils/immunology , Animals , Aspergillus fumigatus/immunology , Caspases, Initiator , Keratitis/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Signal Transduction/immunology
9.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193114

ABSTRACT

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Subject(s)
Circadian Clocks/physiology , Metabolome , Animals , Diet, High-Fat , Energy Metabolism , Liver/metabolism , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Prefrontal Cortex/metabolism , Suprachiasmatic Nucleus/metabolism , Uncoupling Protein 1/metabolism
10.
Front Immunol ; 9: 1182, 2018.
Article in English | MEDLINE | ID: mdl-29896200

ABSTRACT

Neutrophil extracellular trap (NET) formation requires chromatin decondensation before nuclear swelling and eventual extracellular release of DNA, which occurs together with nuclear and cytoplasmic antimicrobial proteins. A key mediator of chromatin decondensation is protein deiminase 4 (PAD4), which catalyzes histone citrullination. In the current study, we examined the role of PAD4 and NETosis following activation of neutrophils by A. fumigatus hyphal extract or cell wall ß-glucan (curdlan) and found that both induced NET release by human and murine neutrophils. Also, using blocking antibodies to CR3 and Dectin-1 together with CR3-deficient CD18-/- and Dectin-1-/- murine neutrophils, we found that the ß-glucan receptor CR3, but not Dectin-1, was required for NET formation. NETosis was also dependent on NADPH oxidase production of reactive oxygen species (ROS). Using an antibody to citrullinated histone 3 (H3Cit) as an indicator of PAD4 activity, we show that ß-glucan stimulated NETosis occurs in neutrophils from C57BL/6, but not PAD4-/- mice. Similarly, a small molecule PAD4 inhibitor (GSK484) blocked NET formation by human neutrophils. Despite these observations, the ability of PAD4-/- neutrophils to release calprotectin and kill A. fumigatus hyphae was not significantly different from C57BL/6 neutrophils, whereas CD18-/- neutrophils exhibited an impaired ability to perform both functions. We also detected H3Cit in A. fumigatus infected C57BL/6, but not PAD4-/- corneas; however, we found no difference between C57BL/6 and PAD4-/- mice in either corneal disease or hyphal killing. Taken together, these findings lead us to conclude that although PAD4 together with CR3-mediated ROS production is required for NET formation in response to A. fumigatus, PAD4-dependent NETosis is not required for A. fumigatus killing either in vitro or during infection.


Subject(s)
Aspergillus fumigatus/immunology , Extracellular Traps/immunology , Fungal Polysaccharides/immunology , Hydrolases/immunology , Hyphae/immunology , Macrophage-1 Antigen/immunology , Neutrophils/immunology , Protein-Arginine Deiminases/immunology , beta-Glucans/immunology , Adolescent , Adult , Aged , Animals , Extracellular Traps/genetics , Female , Fungal Polysaccharides/genetics , Humans , Hydrolases/genetics , Macrophage-1 Antigen/genetics , Male , Mice , Mice, Knockout , Middle Aged , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases/genetics
11.
J Biol Chem ; 291(6): 2812-28, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26644470

ABSTRACT

Diagnosis and therapeutic interventions in pathological conditions rely upon clinical monitoring of key metabolites in the serum. Recent studies show that a wide range of metabolic pathways are controlled by circadian rhythms whose oscillation is affected by nutritional challenges, underscoring the importance of assessing a temporal window for clinical testing and thereby questioning the accuracy of the reading of critical pathological markers in circulation. We have been interested in studying the communication between peripheral tissues under metabolic homeostasis perturbation. Here we present a comparative circadian metabolomic analysis on serum and liver in mice under high fat diet. Our data reveal that the nutritional challenge induces a loss of serum metabolite rhythmicity compared with liver, indicating a circadian misalignment between the tissues analyzed. Importantly, our results show that the levels of serum metabolites do not reflect the circadian liver metabolic signature or the effect of nutritional challenge. This notion reveals the possibility that misleading reads of metabolites in circulation may result in misdiagnosis and improper treatments. Our findings also demonstrate a tissue-specific and time-dependent disruption of metabolic homeostasis in response to altered nutrition.


Subject(s)
Blood Proteins/metabolism , Circadian Rhythm , Dietary Fats/pharmacology , Liver/metabolism , Animals , Male , Metabolomics , Mice
13.
Am J Pathol ; 184(3): 819-26, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412516

ABSTRACT

Patients affected by diabetes show an increased risk of developing Alzheimer disease (AD). Similarly, patients with AD show impaired insulin function and glucose metabolism. However, the underlying molecular mechanisms connecting these two disorders are still not well understood. Herein, we investigated the microtubule-associated protein tau as a new link between AD and diabetes. To determine whether diabetes causes cognitive decline by a tau-dependent mechanism, we treated non-transgenic (Ntg) and tau-knockout mice with streptozotocin, causing type 1 diabetes-like disease (T1D). Interestingly, although induction of T1D in Ntg mice led to cellular and behavioral deficits, it did not do so in tau-knockout mice. Thus, data suggest that tau is a fundamental mediator of the induction of cognitive impairments in T1D. Tau dysregulation, which causes a reduction in synaptic protein levels, may be responsible for the cognitive decline observed in Ntg streptozotocin-treated mice. Concomitantly, we demonstrate the novel finding that depletion of endogenous tau mitigates behavioral impairment and synaptic deficits induced in T1D-like mice. Overall, our data reveal that tau is a key molecular factor responsible for the induction of cognitive deficits observed in T1D and represents a potential therapeutic target for diabetes and patients with AD.


Subject(s)
Alzheimer Disease/etiology , Cognition Disorders/etiology , Diabetes Mellitus, Type 1/complications , Insulin/metabolism , tau Proteins/metabolism , Animals , Cognition , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Streptozocin/metabolism , tau Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 110(30): 12331-6, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23836662

ABSTRACT

The circadian clock gene Period2 (PER2) has been suggested to be a tumor suppressor. However, detailed mechanistic evidence has not been provided to support this hypothesis. We found that loss of PER2 enhanced invasion and activated expression of epithelial-mesenchymal transition (EMT) genes including TWIST1, SLUG, and SNAIL. This finding was corroborated by clinical observation that PER2 down-regulation was associated with poor prognosis in breast cancer patients. We further demonstrated that PER2 served as a transcriptional corepressor, which recruited polycomb proteins EZH2 and SUZ12 as well as HDAC2 to octamer transcription factor 1 (OCT1) (POU2F1) binding sites of the TWIST1 and SLUG promoters to repress expression of these EMT genes. Hypoxia, a condition commonly observed in tumors, caused PER2 degradation and disrupted the PER2 repressor complex, leading to activation of EMT gene expression. This result was further supported by clinical data showing a significant negative correlation between hypoxia and PER2. Thus, our findings clearly demonstrate the tumor suppression function of PER2 and elucidate a pathway by which hypoxia promotes EMT via degradation of PER2.


Subject(s)
Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation/genetics , Hypoxia/genetics , Organic Cation Transporter 1/physiology , Period Circadian Proteins/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation , Female , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , Up-Regulation/genetics
15.
Hum Mol Genet ; 19(24): 4871-85, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20876612

ABSTRACT

Mucopolysaccharidosis type II (MPSII), or Hunter syndrome, is a devastating disorder associated with a shortened life expectancy. Patients affected by MPSII have a variety of symptoms that affect all organs of the body and may include progressive cognitive impairment. MPSII is due to inactivity of the enzyme iduronate-2-sulfatase (IDS), which results in the accumulation of storage material in the lysosomes, such as dermatan and heparan sulfates, with consequent cell degeneration in all tissues including, in the severe phenotype, neurodegeneration in the central nervous system (CNS). To date, the only treatment available is systemic infusion of IDS, which ameliorates exclusively certain visceral defects. Therefore, it is important to simultaneously treat the visceral and CNS defects of the MPSII patients. Here, we have developed enzyme replacement therapy (ERT) protocols in a mouse model that allow the IDS to reach the brain, with the substantial correction of the CNS phenotype and of the neurobehavioral features. Treatments were beneficial even in adult and old MPSII mice, using relatively low doses of infused IDS over long intervals. This study demonstrates that CNS defects of MPSII mice can be treated by systemic ERT, providing the potential for development of an effective treatment for MPSII patients.


Subject(s)
Brain/pathology , Enzyme Replacement Therapy , Iduronate Sulfatase/therapeutic use , Mucopolysaccharidosis II/therapy , Animals , Brain/metabolism , Brain/ultrastructure , Disease Models, Animal , Glycosaminoglycans/metabolism , Iduronate Sulfatase/blood , Lysosomes/metabolism , Lysosomes/ultrastructure , Mice , Motor Activity/physiology , Mucopolysaccharidosis II/blood , Mucopolysaccharidosis II/physiopathology , Organ Specificity , Rotarod Performance Test
16.
BMC Genomics ; 11: 306, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20470391

ABSTRACT

BACKGROUND: The molecular mechanisms leading to a fully differentiated thyrocite are still object of intense study even if it is well known that thyroglobulin, thyroperoxidase, NIS and TSHr are the marker genes of thyroid differentiation. It is also well known that Pax8, TTF-1, Foxe1 and Hhex are the thyroid-enriched transcription factors responsible for the expression of the above genes, thus are responsible for the differentiated thyroid phenotype. In particular, the role of Pax8 in the fully developed thyroid gland was studied in depth and it was established that it plays a key role in thyroid development and differentiation. However, to date the bases for the thyroid-enriched expression of this transcription factor have not been unraveled yet. Here, we report the identification and characterization of a functional thyroid-specific enhancer element located far upstream of the Pax8 gene. RESULTS: We hypothesized that regulatory cis-acting elements are conserved among mammalian genes. Comparison of a genomic region extending for about 100 kb at the 5'-flanking region of the mouse and human Pax8 gene revealed several conserved regions that were tested for enhancer activity in thyroid and non-thyroid cells. Using this approach we identified one putative thyroid-specific regulatory element located 84.6 kb upstream of the Pax8 transcription start site. The in silico data were verified by promoter-reporter assays in thyroid and non-thyroid cells. Interestingly, the identified far upstream element manifested a very high transcriptional activity in the thyroid cell line PC Cl3, but showed no activity in HeLa cells. In addition, the data here reported indicate that the thyroid-enriched transcription factor TTF-1 is able to bind in vitro and in vivo the Pax8 far upstream element, and is capable to activate transcription from it. CONCLUSIONS: Results of this study reveal the presence of a thyroid-specific regulatory element in the 5' upstream region of the Pax8 gene. The identification of this regulatory element represents the first step in the investigation of upstream regulatory mechanisms that control Pax8 transcription during thyroid differentiation and are relevant to further studies on Pax8 as a candidate gene for thyroid dysgenesis.


Subject(s)
Enhancer Elements, Genetic/genetics , Genomics , Paired Box Transcription Factors/genetics , Thyroid Gland/metabolism , 5' Flanking Region/genetics , Animals , Conserved Sequence , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Mice , Organ Specificity , PAX8 Transcription Factor , Paired Box Transcription Factors/metabolism , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Thyroid Gland/cytology , Transcription Factors , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...