Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6718, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112467

ABSTRACT

Psoriasis is a multifactorial, chronic inflammatory skin disease with unresolved questions on its primary events. Iron overload has been described in the epidermis of psoriasis patients, but its relevance remains unknown. We found that the key iron regulatory hormone hepcidin was highly expressed in the epidermis of psoriasis patients, especially the pustular variants resistant to treatments. In a murine model of acute skin inflammation, keratinocyte-derived hepcidin was required for iron retention in keratinocytes, leading to hyperproliferation of the epidermal layer and neutrophil recruitment, two main features of psoriatic skin lesions. Keratinocytes overexpressing hepcidin were sufficient to elicit these psoriasiform features in a transgenic mouse model. Furthermore, transcriptome analysis of these keratinocytes revealed canonical pathways found in human psoriasis, pointing to a causal role for hepcidin in the pathogenesis of the disease. Altogether, our data suggest that hepcidin could be an actionable target for skin psoriasis treatment, in addition to current therapeutics, or targeted as maintenance therapy during remission to prevent recurrence.


Subject(s)
Cell Proliferation , Hepcidins , Iron , Keratinocytes , Mice, Transgenic , Neutrophil Infiltration , Psoriasis , Skin , Hepcidins/metabolism , Hepcidins/genetics , Psoriasis/metabolism , Psoriasis/pathology , Animals , Keratinocytes/metabolism , Humans , Iron/metabolism , Mice , Skin/metabolism , Skin/pathology , Disease Models, Animal , Male , Female , Epidermis/metabolism , Epidermis/pathology , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/pathology
2.
Blood ; 143(13): 1282-1292, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38232308

ABSTRACT

ABSTRACT: As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure the adequate supply of iron to the bone marrow for red blood cell production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine fibrinogen-like 1 (FGL1) as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia, and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo. Deletion of Fgl1 in mice results in higher hepcidin levels at baseline and after bleeding. FGL1 exerts its activity by directly binding to bone morphogenetic protein 6 (BMP6), thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription.


Subject(s)
Anemia , Hepcidins , Mice , Animals , Hepcidins/genetics , Hepcidins/metabolism , Anemia/genetics , Anemia/metabolism , Iron/metabolism , Liver/metabolism , Bone Morphogenetic Protein 6/genetics , Bone Morphogenetic Protein 6/metabolism , Homeostasis
3.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066218

ABSTRACT

As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure adequate supply of iron to the bone marrow for red blood cells production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine FGL1 as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo . Deletion of Fgl1 in mice results in a blunted repression of hepcidin after bleeding. FGL1 exerts its activity by direct binding to BMP6, thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription. Key points: 1/ FGL1 regulates iron metabolism during the recovery from anemia. 2/ FGL1 is an antagonist of the BMP/SMAD signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL