Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 64(13): 5175-5193, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38710096

ABSTRACT

Ubiquinone (UQ) is a redox polyisoprenoid lipid found in the membranes of bacteria and eukaryotes that has important roles, notably one in respiratory metabolism, which sustains cellular bioenergetics. In Escherichia coli, several steps of the UQ biosynthesis take place in the cytosol. To perform these reactions, a supramolecular assembly called Ubi metabolon is involved. This latter is composed of seven proteins (UbiE, UbiG, UbiF, UbiH, UbiI, UbiJ, and UbiK), and its structural organization is unknown as well as its protein stoichiometry. In this study, a computational framework has been designed to predict the structure of this macromolecular assembly. In several successive steps, we explored the possible protein interactions as well as the protein stoichiometry, to finally obtain a structural organization of the complex. The use of AlphaFold2-based methods combined with evolutionary information enabled us to predict several models whose quality and confidence were further analyzed using different metrics and scores. Our work led to the identification of a "core assembly" that will guide functional and structural characterization of the Ubi metabolon.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Models, Molecular , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Ubiquinone/metabolism , Ubiquinone/chemistry , Ubiquinone/analogs & derivatives , Protein Conformation , Computational Biology/methods
2.
Mol Biol Evol ; 40(10)2023 10 04.
Article in English | MEDLINE | ID: mdl-37788637

ABSTRACT

The availability of an ever-increasing diversity of prokaryotic genomes and metagenomes represents a major opportunity to understand and decipher the mechanisms behind the functional diversification of microbial biosynthetic pathways. However, it remains unclear to what extent a pathway producing a specific molecule from a specific precursor can diversify. In this study, we focus on the biosynthesis of ubiquinone (UQ), a crucial coenzyme that is central to the bioenergetics and to the functioning of a wide variety of enzymes in Eukarya and Pseudomonadota (a subgroup of the formerly named Proteobacteria). UQ biosynthesis involves three hydroxylation reactions on contiguous carbon atoms. We and others have previously shown that these reactions are catalyzed by different sets of UQ-hydroxylases that belong either to the iron-dependent Coq7 family or to the more widespread flavin monooxygenase (FMO) family. Here, we combine an experimental approach with comparative genomics and phylogenetics to reveal how UQ-hydroxylases evolved different selectivities within the constrained framework of the UQ pathway. It is shown that the UQ-FMOs diversified via at least three duplication events associated with two cases of neofunctionalization and one case of subfunctionalization, leading to six subfamilies with distinct hydroxylation selectivity. We also demonstrate multiple transfers of the UbiM enzyme and the convergent evolution of UQ-FMOs toward the same function, which resulted in two independent losses of the Coq7 ancestral enzyme. Diversification of this crucial biosynthetic pathway has therefore occurred via a combination of parallel evolution, gene duplications, transfers, and losses.


Subject(s)
Gene Duplication , Ubiquinone , Ubiquinone/genetics , Ubiquinone/metabolism , Mixed Function Oxygenases/genetics , Iron/metabolism
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686086

ABSTRACT

Plasmodium vivax malaria affects 14 million people each year. Its invasion requires interactions between the parasitic Duffy-binding protein (PvDBP) and the N-terminal extracellular domain (ECD1) of the host's Duffy antigen/receptor for chemokines (DARC). ECD1 is highly flexible and intrinsically disordered, therefore it can adopt different conformations. We computationally modeled the challenging ECD1 local structure. With T-REMD simulations, we sampled its dynamic behavior and collected its most representative conformations. Our results suggest that most of the DARC ECD1 domain remains in a disordered state during the simulated time. Globular local conformations are found in the analyzed local free-energy minima. These globular conformations share an α-helix spanning residues Ser18 to Ser29 and in many cases they comprise an antiparallel ß-sheet, whose ß-strands are formed around residues Leu10 and Ala49. The formation of a parallel ß-sheet is almost negligible. So far, progress in understanding the mechanisms forming the basis of the P. vivax malaria infection of reticulocytes has been hampered by experimental difficulties, along with a lack of DARC structural information. Our collection of the most probable ECD1 structural conformations will help to advance modeling of the DARC structure and to explore DARC-ECD1 interactions with a range of physiological and pathological ligands.


Subject(s)
Malaria, Vivax , Molecular Dynamics Simulation , Humans , Chemokines , Receptors, Antigen , Temperature
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142227

ABSTRACT

Ubiquinone (UQ) is a polyisoprenoid lipid found in the membranes of bacteria and eukaryotes. UQ has important roles, notably in respiratory metabolisms which sustain cellular bioenergetics. Most steps of UQ biosynthesis take place in the cytosol of E. coli within a multiprotein complex called the Ubi metabolon, that contains five enzymes and two accessory proteins, UbiJ and UbiK. The SCP2 domain of UbiJ was proposed to bind the hydrophobic polyisoprenoid tail of UQ biosynthetic intermediates in the Ubi metabolon. How the newly synthesised UQ might be released in the membrane is currently unknown. In this paper, we focused on better understanding the role of the UbiJ-UbiK2 heterotrimer forming part of the metabolon. Given the difficulties to gain functional insights using biophysical techniques, we applied a multiscale molecular modelling approach to study the UbiJ-UbiK2 heterotrimer. Our data show that UbiJ-UbiK2 interacts closely with the membrane and suggests possible pathways to enable the release of UQ into the membrane. This study highlights the UbiJ-UbiK2 complex as the likely interface between the membrane and the enzymes of the Ubi metabolon and supports that the heterotrimer is key to the biosynthesis of UQ8 and its release into the membrane of E. coli.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipids , Models, Molecular , Ubiquinone/metabolism
5.
ISME J ; 15(9): 2792-2808, 2021 09.
Article in English | MEDLINE | ID: mdl-33795828

ABSTRACT

Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.


Subject(s)
Ammonia , Archaea , Archaea/genetics , Geologic Sediments , Metagenome , Oxidation-Reduction , Phylogeny
6.
Proc Natl Acad Sci U S A ; 117(51): 32617-32626, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288718

ABSTRACT

No other environment hosts as many microbial cells as the marine sedimentary biosphere. While the majority of these cells are expected to be alive, they are speculated to be persisting in a state of maintenance without net growth due to extreme starvation. Here, we report evidence for in situ growth of anaerobic ammonium-oxidizing (anammox) bacteria in ∼80,000-y-old subsurface sediments from the Arctic Mid-Ocean Ridge. The growth is confined to the nitrate-ammonium transition zone (NATZ), a widespread geochemical transition zone where most of the upward ammonium flux from deep anoxic sediments is being consumed. In this zone the anammox bacteria abundances, assessed by quantification of marker genes, consistently displayed a four order of magnitude increase relative to adjacent layers in four cores. This subsurface cell increase coincides with a markedly higher power supply driven mainly by intensified anammox reaction rates, thereby providing a quantitative link between microbial proliferation and energy availability. The reconstructed draft genome of the dominant anammox bacterium showed an index of replication (iRep) of 1.32, suggesting that 32% of this population was actively replicating. The genome belongs to a Scalindua species which we name Candidatus Scalindua sediminis, so far exclusively found in marine sediments. It has the capacity to utilize urea and cyanate and a mixotrophic lifestyle. Our results demonstrate that specific microbial groups are not only able to survive unfavorable conditions over geological timescales, but can proliferate in situ when encountering ideal conditions with significant consequences for biogeochemical nitrogen cycling.


Subject(s)
Bacterial Physiological Phenomena , Genome, Bacterial , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Ammonium Compounds/chemistry , Arctic Regions , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Nitrates/chemistry , Nitrogen/metabolism , Oceans and Seas
7.
mBio ; 11(5)2020 10 13.
Article in English | MEDLINE | ID: mdl-33051370

ABSTRACT

Unlike all other archaeal lineages, ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread and abundant in all moderate and oxic environments on Earth. The evolutionary adaptations that led to such unprecedented ecological success of a microbial clade characterized by highly conserved energy and carbon metabolisms have, however, remained underexplored. Here, we reconstructed the genomic content and growth temperature of the ancestor of all AOA, as well as the ancestors of the marine and soil lineages, based on 39 available complete or nearly complete genomes of AOA. Our evolutionary scenario depicts an extremely thermophilic, autotrophic, aerobic ancestor from which three independent lineages of a marine and two terrestrial groups radiated into moderate environments. Their emergence was paralleled by (i) a continuous acquisition of an extensive collection of stress tolerance genes mostly involved in redox maintenance and oxygen detoxification, (ii) an expansion of regulatory capacities in transcription and central metabolic functions, and (iii) an extended repertoire of cell appendages and modifications related to adherence and interactions with the environment. Our analysis provides insights into the evolutionary transitions and key processes that enabled the conquest of the diverse environments in which contemporary AOA are found.


Subject(s)
Adaptation, Physiological/genetics , Ammonia/metabolism , Aquatic Organisms/genetics , Archaea/genetics , Genome, Archaeal , Soil Microbiology , Archaea/metabolism , Carbon Cycle , Evolution, Molecular , Oxidation-Reduction
8.
ISME J ; 14(11): 2659-2674, 2020 11.
Article in English | MEDLINE | ID: mdl-32665710

ABSTRACT

Ammonia-oxidizing archaea (AOA) are widespread in nature and are involved in nitrification, an essential process in the global nitrogen cycle. The enzymes for ammonia oxidation and electron transport rely heavily on copper (Cu), which can be limited in nature. In this study the model soil archaeon Nitrososphaera viennensis was investigated via transcriptomic analysis to gain insight regarding possible Cu uptake mechanisms and compensation strategies when Cu becomes limiting. Upon Cu limitation, N. viennensis exhibited impaired nitrite production and thus growth, which was paralleled by downregulation of ammonia oxidation, electron transport, carbon fixation, nucleotide, and lipid biosynthesis pathway genes. Under Cu-limitation, 1547 out of 3180 detected genes were differentially expressed, with 784 genes upregulated and 763 downregulated. The most highly upregulated genes encoded proteins with a possible role in Cu binding and uptake, such as the Cu chelator and transporter CopC/D, disulfide bond oxidoreductase D (dsbD), and multicopper oxidases. While this response differs from the marine strain Nitrosopumilus maritimus, conserved sequence motifs in some of the Cu-responsive genes suggest conserved transcriptional regulation in terrestrial AOA. This study provides possible gene regulation and energy conservation mechanisms linked to Cu bioavailability and presents the first model for Cu uptake by a soil AOA.


Subject(s)
Ammonia , Archaea , Archaea/genetics , Copper , Nitrification , Oxidation-Reduction , Phylogeny , Soil , Soil Microbiology , Transcriptome
9.
Trends Microbiol ; 28(5): 372-386, 2020 05.
Article in English | MEDLINE | ID: mdl-32298615

ABSTRACT

Protein secretion is important for many biotic and abiotic interactions. The evolution of protein secretion systems of bacteria, and related nanomachines, occurred by the co-option of machineries for motility, conjugation, injection, or adhesion. Some of these secretion systems emerged many times, whereas others are unique. In most cases, their evolution occurred by successive rounds of gene accretion, deletion, and horizontal transfer, resulting in machines that can be very different from the original ones. The frequency with which such co-option processes occurred seems to depend on the complexity of the systems, their differences to the ancestral machines, the availability of genetic material to tinker with, and possibly on the mechanisms of effector recognition. Understanding the evolution of secretion systems illuminates their functional diversification and could drive the discovery of novel systems.


Subject(s)
Archaea/genetics , Bacteria/genetics , Bacterial Secretion Systems/genetics , Bacterial Secretion Systems/metabolism , Biological Evolution , Archaea/metabolism , Bacteria/metabolism , Bacteriophages/genetics , Protein Transport/genetics , Protein Transport/physiology
10.
Methods Mol Biol ; 2075: 265-283, 2020.
Article in English | MEDLINE | ID: mdl-31584169

ABSTRACT

We present a computational method to identify conjugative systems in plasmids and chromosomes using the CONJscan module of MacSyFinder. The method relies on the identification of the protein components of the system using hidden Markov model profiles and then checking that the composition and genetic organization of the system is consistent with that expected from a conjugative system. The method can be assessed online using the Galaxy workflow or locally using a standalone software. The latter version allows to modify the models of the module (i.e., to change the expected components, their number, and their organization).CONJscan identifies conjugative systems, but when the mobile genetic element is integrative (ICE), one often also wants to delimit it from the chromosome. We present a method, with a script, to use the results of CONJscan and comparative genomics to delimit ICE in chromosomes. The method provides a visual representation of the ICE location. Together, these methods facilitate the identification of conjugative elements in bacterial genomes.


Subject(s)
Computational Biology/methods , Conjugation, Genetic , Gene Transfer, Horizontal , Plasmids/genetics , Software , DNA Transposable Elements , Genome, Bacterial , Genomic Islands , Genomics
11.
Front Microbiol ; 10: 1571, 2019.
Article in English | MEDLINE | ID: mdl-31379764

ABSTRACT

Climate change is causing arctic regions to warm disproportionally faster than those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and potentially higher greenhouse gas emissions. It is thus increasingly important to better characterize the microorganisms driving arctic biogeochemical processes and their potential responses to changing conditions. Here, we describe a novel thaumarchaeon enriched from an arctic soil, Candidatus Nitrosocosmicus arcticus strain Kfb, which has been maintained for seven years in stable laboratory enrichment cultures as an aerobic ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that this organism harbors all genes involved in ammonia oxidation and in carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism, similar to other AOA. Ca. N. arcticus oxidizes ammonia optimally between 20 and 28°C, well above average temperatures in its native high arctic environment (-13-4°C). Ammonia oxidation rates were nevertheless much lower than those of most cultivated mesophilic AOA (20-45°C). Intriguingly, we repeatedly observed apparent faster growth rates (based on marker gene counts) at lower temperatures (4-8°C) but without detectable nitrite production. Together with potential metabolisms predicted from its genome content, these observations indicate that Ca. N. arcticus is not a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a greater metabolic and physiological versatility of AOA. The physiology of Ca. N. arcticus suggests that increasing temperatures might drastically affect nitrification in arctic soils by stimulating archaeal ammonia oxidation.

12.
PLoS Biol ; 17(7): e3000390, 2019 07.
Article in English | MEDLINE | ID: mdl-31323028

ABSTRACT

Processes of molecular innovation require tinkering and shifting in the function of existing genes. How this occurs in terms of molecular evolution at long evolutionary scales remains poorly understood. Here, we analyse the natural history of a vast group of membrane-associated molecular systems in Bacteria and Archaea-the type IV filament (TFF) superfamily-that diversified in systems involved in flagellar or twitching motility, adhesion, protein secretion, and DNA uptake. The phylogeny of the thousands of detected systems suggests they may have been present in the last universal common ancestor. From there, two lineages-a bacterial and an archaeal-diversified by multiple gene duplications, gene fissions and deletions, and accretion of novel components. Surprisingly, we find that the 'tight adherence' (Tad) systems originated from the interkingdom transfer from Archaea to Bacteria of a system resembling the 'EppA-dependent' (Epd) pilus and were associated with the acquisition of a secretin. The phylogeny and content of ancestral systems suggest that initial bacterial pili were engaged in cell motility and/or DNA uptake. In contrast, specialised protein secretion systems arose several times independently and much later in natural history. The functional diversification of the TFF superfamily was accompanied by genetic rearrangements with implications for genetic regulation and horizontal gene transfer: systems encoded in fewer loci were more frequently exchanged between taxa. This may have contributed to their rapid evolution and spread across Bacteria and Archaea. Hence, the evolutionary history of the superfamily reveals an impressive catalogue of molecular evolution mechanisms that resulted in remarkable functional innovation and specialisation from a relatively small set of components.


Subject(s)
Cytoskeleton/genetics , DNA/metabolism , Gene Transfer, Horizontal/genetics , Intermediate Filament Proteins/genetics , Intermediate Filaments/genetics , Archaea/classification , Archaea/genetics , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Cell Adhesion/genetics , Cytoskeleton/metabolism , DNA/genetics , Evolution, Molecular , Intermediate Filament Proteins/classification , Intermediate Filament Proteins/metabolism , Intermediate Filaments/classification , Intermediate Filaments/metabolism , Movement , Phylogeny , Protein Transport/genetics
13.
Syst Appl Microbiol ; 41(4): 311-323, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29653822

ABSTRACT

Diazotrophic Actinobacteria of the genus Frankia represent a challenge to classical bacterial taxonomy as they include many unculturable strains. As a consequence, we still have a poor understanding of their diversity, evolution and biogeography. In this study, a Multi-Locus Sequence Analysis (MLSA) using atpD, dnaA, ftsZ, pgk, and rpoB loci was done on a large set of cultured and uncultured strains, compared to 16S rRNA and correlated to Average Nucleotide Identity (ANI) from available Frankia genomes. MLSA provided a robust resolution of Frankia genus phylogeny and clarified the status of unresolved species and complex of species. The robustness of single-gene topologies and their congruence with the MLSA tree were tested. Lateral Gene Transfers (LGT) were few and scattered, suggesting they had no impact on the concatenate topology. The pgk marker - providing the longest sequence, highest mean genetic divergence and least occurrence of LGT - was used to survey an unequalled number of Alnus-infective Frankia - mainly uncultured strains from a broad range of host-species and geographic origins. This marker allowed reliable Single-Locus Strain Typing (SLST) below the species level, revealed an undiscovered taxonomical diversity, and highlighted the effect of cultivation, sporulation phenotype and host plant species on symbiont richness, diversity and phylogeny.


Subject(s)
Alnus/microbiology , Frankia/classification , Frankia/genetics , Myricaceae/microbiology , Root Nodules, Plant/microbiology , Amplified Fragment Length Polymorphism Analysis , Base Sequence , DNA, Bacterial/genetics , Frankia/isolation & purification , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
14.
Front Microbiol ; 9: 28, 2018.
Article in English | MEDLINE | ID: mdl-29434576

ABSTRACT

Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.

15.
Methods Mol Biol ; 1615: 1-21, 2017.
Article in English | MEDLINE | ID: mdl-28667599

ABSTRACT

Protein secretion systems are complex molecular machineries that translocate proteins through the outer membrane, and sometimes through multiple other barriers. They have evolved by co-option of components from other envelope-associated cellular machineries, making them sometimes difficult to identify and discriminate. Here, we describe how to identify protein secretion systems in bacterial genomes using MacSyFinder. This flexible computational tool uses the knowledge stemming from experimental studies to identify homologous systems in genome data. It can be used with a set of predefined models-"TXSScan"-to identify all major secretion systems of diderm bacteria (i.e., with inner and with LPS-containing outer membranes). For this, it identifies and clusters colocalized components of secretion systems using sequence similarity searches with hidden Markov model protein profiles. Finally, it checks whether the genetic content and organization of clusters satisfy the constraints of the model. TXSScan models can be customized to search for variants of known systems. The models can also be built from scratch to identify novel systems. In this chapter, we describe a complete pipeline of analysis, including the identification of a reference set of experimentally studied systems, the identification of components and the construction of their protein profiles, the definition of the models, their optimization, and, finally, their use as tools to search genomic data.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Computational Biology/methods , Genome, Bacterial , Genomics/methods , Protein Translocation Systems/genetics , Protein Translocation Systems/metabolism , Databases, Genetic , Proteomics/methods , Reproducibility of Results , Software , User-Computer Interface , Web Browser , Workflow
16.
Proc Natl Acad Sci U S A ; 113(49): E7937-E7946, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27864514

ABSTRACT

Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile "Ca. Nitrosotalea devanaterra" revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and "Ca Nitrosopelagicus brevis" proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs.


Subject(s)
Adaptation, Biological , Ammonia/metabolism , Archaea/genetics , Genome, Archaeal , Proteome , Archaea/metabolism , Biofilms , Carbon/metabolism , Carrier Proteins , Cell Adhesion , DNA Repair , Energy Metabolism , Oxidation-Reduction , PII Nitrogen Regulatory Proteins , Proteogenomics
17.
Nat Microbiol ; 2: 16182, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27723729

ABSTRACT

The reproduction mode of uncultivable microorganisms deserves investigation as it can largely diverge from conventional transverse binary fission. Here, we show that the rod-shaped gammaproteobacterium thriving on the surface of the Robbea hypermnestra nematode divides by FtsZ-based, non-synchronous invagination of its poles-that is, the host-attached and fimbriae-rich pole invaginates earlier than the distal one. We conclude that, in a naturally occurring animal symbiont, binary fission is host-oriented and does not require native FtsZ to polymerize into a ring at any septation stage.


Subject(s)
Bacterial Proteins/metabolism , Cell Division , Cytoskeletal Proteins/metabolism , Gammaproteobacteria/physiology , Animals , Chromadorea/microbiology , Gammaproteobacteria/growth & development , Gammaproteobacteria/metabolism
18.
Syst Biol ; 65(5): 812-23, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27208890

ABSTRACT

Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens.


Subject(s)
Classification/methods , Phylogeny , Biological Evolution , Computer Simulation , Data Interpretation, Statistical , Probability
19.
Sci Rep ; 6: 23080, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26979785

ABSTRACT

Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems' components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SS(iii) and T9SS were restricted to Bacteroidetes, and T6SS(ii) to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Genome, Bacterial/genetics , Protein Translocation Systems/genetics , Bacteria/classification , Bacteria/metabolism , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Lipopolysaccharides/metabolism , Models, Genetic , Phylogeny , Protein Translocation Systems/classification , Protein Translocation Systems/metabolism
20.
Front Microbiol ; 5: 505, 2014.
Article in English | MEDLINE | ID: mdl-25426102

ABSTRACT

Marine phytoplankton produce half of the oxygen we breathe and their astounding diversity is just starting to be unraveled. Many microbial phytoplankton are thought to be phototrophic, depending solely on inorganic sources of carbon and minerals for growth rather than preying on other planktonic cells. However, there is increasing evidence that symbiotic associations, to a large extent with bacteria, are required for vitamin or nutrient uptake for many eukaryotic microalgae. Here, we use in silico approaches to look for putative symbiotic interactions by analysing the gene content of microbial communities associated with 13 different Ostreococcus tauri (Chlorophyta, Mamilleophyceae) cultures sampled from the Mediterranean Sea. While we find evidence for bacteria in all cultures, there is no ubiquitous bacterial group, and the most prevalent group, Flavobacteria, is present in 10 out of 13 cultures. Among seven of the microbiomes, we detected genes predicted to encode type 3 secretion systems (T3SS, in 6/7 microbiomes) and/or putative type 6 secretion systems (T6SS, in 4/7 microbiomes). Phylogenetic analyses show that the corresponding genes are closely related to genes of systems identified in bacterial-plant interactions, suggesting that these T3SS might be involved in cell-to-cell interactions with O. tauri.

SELECTION OF CITATIONS
SEARCH DETAIL
...