Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 36(1): 2183-2198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34602000

ABSTRACT

Pyrroles and its fused forms possess antimicrobial activities, they can easily interact with biomolecules of living systems. A series of substituted pyrroles, and its fused pyrimidines and triazines forms have been synthesised, all newly synthesised compound structures were confirmed by spectroscopic analysis. Generally, the compounds inhibited growth of some important human pathogens, the best effect was given by: 2a, 3c, 4d on Gram-positive bacteria and was higher on yeast (C. albicans), by 5c on Gram-negative bacteria and by 5a then 3c on filamentous fungi (A. fumigatus and F. oxysporum). Such results present good antibacterial and antifungal potential candidates to help overcome the global problem of antibiotic resistance and opportunistic infections outbreak. Compound 3c gave the best anti-phytopathogenic effect at a 50-fold lower concentration than Kocide 2000, introducing a safe commercial candidate for agricultural use. The effect of the compounds on DNA was monitored to detect the mode of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Pyrroles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
3.
Acta Pharm ; 59(2): 145-58, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19564140

ABSTRACT

In an effort to establish new pyrroles and pyrrolo[2,3-d] pyrimidines with improved antimicrobial activity we report here the synthesis and in vitro microbiological evaluation of a series of pyrrole derivatives. A series of new 2-aminopyrrole-3-carbonitriles (1a-d) were synthesized from the reaction of benzoin, primary aromatic amines and malononitrile, from which a number of pyrrole derivatives (2a-d to 5a-d) and pyrrolo[2,3-d]pyrimidines (6a-d to 10a, d) were synthesized. The in vitro antimicrobial testing of the synthesized compounds was carried out against Gram-positive, Gram-negative bacteria and fungi. Some of the prepared compounds, [2-amino-1-(2-methylphenyl)-4,5-diphenyl-1H-pyrrole-3-carbonitriles (1b), 2-amino-3-carbamoyl-1-(3-methylphenyl)-4,5-diphenyl-1H-pyrroles (2b), N-(3-cyano-1-(2-methylphenyl)-4,5-diphenyl-1H-pyrrol-2-yl)-acetamides (3b), N-(3-cyano-1-(3-methylphenyl)-4,5-diphenyl-1H-pyrrol-2-yl)-acetamides (3c), 2-amino-1-(4-methoxyphenyl)-4,5-diphenyl-3-tetrazolo-1H-pyrroles (5d), 7-(4-methoxyphenyl)-5,6-diphenyl-7H-pyrrolo [2,3-d]pyrimidin-4(3H)-ones (7d), 7-(3-methylphenyl)-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4(3H)-thione (9b) and N-(7-(2-methylphenyl)-5,6-diphenyl-7H-pyrrolo[2,3-d] pyrimidine)-N-aryl amines (10a)] showed potent antimicrobial activity.


Subject(s)
Anti-Infective Agents/chemical synthesis , Drug Design , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Anti-Infective Agents/pharmacology , Fungi/drug effects , Fungi/growth & development , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Molecular Structure , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...