Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 23(1): 270, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752448

ABSTRACT

BACKGROUND: Water scarcity is now a global challenge due to the population growth and the limited amount of available potable water. In addition, modern industrialization, and microbial pathogenesis is resulting in water pollution on a large scale. METHODS: In the present study, reusable Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was incorporated with CdS NPs to develop an efficient photocatalyst, and antimicrobial agents for wastewater treatment, and disinfection purpose. The antibacterial performance of the gamma-irradiated samples was evaluated against various types of Gram-positive bacteria using ZOI, MIC, antibiofilm, and effect of UV-exposure. Antibacterial reaction mechanism was assessed by bacterial membrane leakage assay, and SEM imaging. In addition, their photocatalytic efficiency was tested against MB cationic dye as a typical water organic pollutant. RESULTS: Our results showed that, the formed CdS NPs were uniformly distributed onto the surface of the nanocomposite matrix. While, the resulted CdS-based nanocomposite possessed an average particle size of nearly 90.6 nm. The antibacterial performance of the prepared nanocomposite was significantly increased after activation with gamma and UV irradiations. The improved antibacterial performance was mainly due to the synergistic effect of both TiO2 and CdS NPs; whereas, the highest photocatalytic efficiency of MB removal was exhibited in alkaline media due to the electrostatic attraction between the cationic MB and the negatively-charged samples. In addition, the constructed heterojunction enabled better charge separation and increased the lifetime of the photogenerated charge carriers. CONCLUSION: Our results can pave the way towards the development of efficient photocatalysts for wastewater treatment and promising antibacterial agents for disinfection applications.


Subject(s)
Disinfection , Nanocomposites , Disinfection/methods , Silicon Dioxide , Anti-Bacterial Agents/pharmacology , Biofilms
2.
Sci Rep ; 13(1): 6331, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072527

ABSTRACT

The continued pollution, waste, and unequal distribution of the limited amount of fresh water on earth are pushing the world into water scarcity crisis. Consequently, development of revolutionary, cost-effective, and efficient techniques for water purification is essential. Herein, molten flux method was used for the preparation of micro-sized Al-doped SrTiO3 photocatalyst loaded with RhCr2O3 and CoOOH cocatalysts via simple impregnation method for the photo-assisted degradation of Congo red dye under UV and visible irradiation compared with P25 standard photocatalyst. In addition, photoelectrochemical analysis was conducted to reveal the separation and transfer efficiency of the photogenerated e-/h+ pairs playing the key role in photocatalysis. SEM and TEM analyses revealed that both P25 and the pristine SrTiO3 have spherical shapes, while Al-doped SrTiO3 and the sample loaded with cocatalysts have cubic shapes with a relatively higher particle size reaching 145 nm. In addition, the lowest bandgap is due to Al+3 ion doping and excessive surface oxygen vacancies, as confirmed by both UV-Vis diffuse-reflectance and XPS analyses. The loading of the cocatalysts resulted in a change in the bandgap from n-type (pristine SrTiO3 and Al-SrTiO3) into p-type (cocatalyst loaded sample) as exhibited by Mott-Schottky plots. Besides, the cocatalyst-loaded sample exhibited good performance stability after 5 cycles of the photocatalytic removal of Congo red dye. OH· radical was the primary species responsible for CR degradation as confirmed by experiments with radical scavengers. The observed performance of the prepared samples under both UV and visible light could foster the ongoing efforts towards more efficient photocatalysts for water purification.

3.
Nanoscale ; 14(23): 8306-8317, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35660850

ABSTRACT

Due to modern industrialization and population growth, access to clean water has become a global challenge. In this study, a metal-semiconductor heterojunction was constructed between Cu NPs and the Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix for the photodegradation of potassium permanganate, hexavalent chromium Cr(VI) and p-nitroaniline (pNA) under UV light. In addition, the electronic and adsorption properties after Cu loading were evaluated using density functional theory (DFT) calculations. Moreover, the antimicrobial properties of the prepared samples toward pathogenic bacteria and unicellular fungi were investigated. Photocatalytic measurements show the outstanding efficiency of the Cu-loaded nanocomposite compared to that of bare Cu NPs and the composite matrix. Degradation efficiencies of 44% after 80 min, 100% after 60 min, and 65% after 90 min were obtained against potassium permanganate, Cr(VI), and pNA, respectively. Similarly, the antimicrobial evaluation showed high ZOI, lower MIC, higher protein leakage amount, and cell lysis of nearly all microbes treated with the Cu-loaded nanocomposite.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Anti-Bacterial Agents/pharmacology , Catalysis , Light , Potassium Permanganate , Silicon Dioxide , Titanium/pharmacology , Ultraviolet Rays
4.
Life Sci ; 288: 120168, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34826437

ABSTRACT

Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS: To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS: After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS: Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE: This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells/pathology , MicroRNAs/genetics , Phenotype , Tumor Microenvironment , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Cell Cycle , Cell Movement , Cell Proliferation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Tumor Cells, Cultured
5.
Int J Mol Sci ; 22(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576334

ABSTRACT

Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2-XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2-XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2-XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2-xO4; X = 0.06 treatment, morphological differences in S.aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2-XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Cerium/pharmacology , Gamma Rays , HT29 Cells , Humans , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology
6.
Int J Biol Macromol ; 179: 333-344, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33675834

ABSTRACT

A new strategy regarding the fabrication of chitosan (CS) or ethylene diamine tetraacetic acid (EDTA) on graphene oxide (GO) was performed. The nematocidal potential against Meloidogyne incognita causing root-knot infection in eggplant was tested. The plant immune response was investigated through measuring the photosynthetic pigments, phenols and proline contents, oxidative stress, and antioxidant enzymes activity. Results indicating that, the treatment by pure GO recorded the most mortality percentages of M. incognita 2nd juveniles followed by GO-CS then GO-EDTA. In vivo greenhouse experiments reveals that, the most potent treatment in reducing nematodes was GO-CS which recorded 85.42%, 75.3%, 55.5%, 87.81%, and 81.32% in numbers of 2nd juveniles, galls, females, egg masses and the developmental stage, respectively. The highest chlorophyll a (104%), chlorophyll b (46%), total phenols (137.5%), and free proline (145.2%) were recorded in GO-CS. The highest malondialdehyde (MDA) value was achieved by GO-EDTA (7.22%), and hydrogen peroxide (H2O2) content by 47.51% after the treatment with pure GO. Treatment with GO-CS increased the activities of catalase (CAT) by 98.3%, peroxidase (POD) by 97.52%, polyphenol oxidase (PPO) by 113.8%, and superoxide dismutase (SOD) by 42.43%. The synthesized nanocomposites increases not only the nematocidal activity but also the plant systematic immune response.


Subject(s)
Chitosan/pharmacology , Graphite/pharmacology , Nematoda/drug effects , Plant Diseases , Plant Immunity/drug effects , Solanum melongena , Animals , Edetic Acid , Nematode Infections/immunology , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/immunology , Plant Roots/parasitology , Solanum melongena/immunology , Solanum melongena/parasitology
7.
RSC Adv ; 11(58): 36528-36553, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35494372

ABSTRACT

Excessive levels of dyes and heavy metals in water sources have long been a source of concern, posing significant environmental and public health threats. However, adsorption is a feasible technique for removing dye contaminants and heavy metals from water due to its high efficiency, cost-effectiveness, and easy operation. Numerous researchers in batch studies extensively evaluated various adsorbents such as natural materials, and agriculture-derived and industrial wastes; however, large-scale application is still missing. Nanotechnology is a novel approach that has arisen as one of the most versatile and cost-effective ways for dye and heavy metal removal. Its promotion on large-scale applications to investigate technological, fiscal, and environmental aspects for wastewater decontamination is particularly important. This review critically reviews wastewater treatment techniques, emphasizing the adsorption process and highlighting the most effective parameters: solution pH, adsorbent dosage, adsorbent particle size, initial concentration, contact time, and temperature. In addition, a comprehensive, up-to-date list of potentially effective low-cost adsorbents and nano-sorbents for the removal of dyes and heavy metals has been compiled. Finally, the challenges towards the practical application of the adsorption process based on various adsorbents have been drawn from the literature reviewed, and our suggested future perspectives are proposed.

8.
RSC Adv ; 11(43): 26463-26480, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35480012

ABSTRACT

Once the World Health Organization (WHO) declared the COVID-19 outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Here we review the most recent data on the novel SARS-CoV-2 pathogen. We analyzed its etiology, pathogenesis, diagnosis, prevention, and current medications. After that, we summarized the promising drug delivery application of nanomaterial-based systems. Their preparation routes, unique advantages over the traditional drug delivery routes and their toxicity though risk analysis were also covered. We also discussed in detail the mechanism of action for one example of drug-loaded nanomaterial drug delivery systems (Avigan-contained nano-emulsions). This review provides insights about employing nanomaterial-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency.

9.
RSC Adv ; 11(63): 39636-39645, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-35494151

ABSTRACT

Naturally, a combination of metal oxides and carbon materials enhances the electrochemical performance of supercapacitor (SC) electrodes. We report on two different materials with highly conductive carbon dots (CDs) and a Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite with a high power density, a high specific surface area, and a nanoporous structure to improve power and energy density in energy storage devices. A simple and low-cost process for synthesizing the hybrid SC electrode material Co0.5Ni0.5Fe2O4/SiO2/TiO2/CDs, known as CDs-nanocomposite, was performed via a layer-by-layer method; then, the CDs-nanocomposite was loaded on a nickel foam substrate for SC electrochemical measurements. A comparative study of the surface and morphology of CDs, the Co0.5Ni0.5Fe2O4/SiO2/TiO2 nanocomposite and CDs-nanocomposite was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), BET surface area, and Raman spectroscopy. The synthesized CDs-nanocomposite electrode material displayed enhanced electrochemical performance, having a high specific capacitance of 913.7 F g-1 at a scan rate of 5 mV s-1 and capacitance retention of 72.2%, as well as remarkable long-life cyclic stability over 3000 cycles in the three-electrode setup and 1 M KOH electrolyte. It also demonstrated a superior energy density of 130.7 W h kg-1. The improved electrochemical behavior of the CDs-nanocomposite for SC electrodes, together with its fast and simple synthesis method, provides a suitable point of reference. Other kinds of metal oxide nanocomposites can be synthesized for use in energy storage devices.

10.
J Hazard Mater ; 410: 124657, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33272728

ABSTRACT

The problem of hazardous wastewater remediation is a complicated issue and a global challenge. Herein, a layered Co0.5Ni0.5Fe2O4/SiO2/TiO2 composite matrix was prepared and incorporated with three carbon nanomaterials having different dimensionalities, carbon dots (C-dots, 0D), single-walled carbon nanotubes (1D), and reduced graphene oxide (2D), in an effort to create effective photocatalytic nanocomposites for chloramine-T removal from water. Microstructural analyses confirmed the formation of nanocomposites and revealed their chemistry and structure. Elemental mapping revealed a uniform distribution of elements throughout the nanocomposite matrix that was free of impurities. The spherical shape of the matrix particles (average diameter ~90 nm) and their conjugation with the carbon nanomaterials were confirmed. Nitrogen adsorption-desorption isotherms revealed that the nanocomposites were mesoporous but also contained macropores. The surface chemical compositions of the nanocomposites were investigated and showed a range of available binding energies. The kinetics of photocatalysis by the system were studied, and the effects of different parameters (such as photocatalyst dose and charge-carrier scavengers) on the efficiency of chloramine-T degradation were also investigated. The nanocomposite loaded with 10% C-dots exhibited high UV-assisted photocatalytic activity for chloramine-T degradation (65% removal efficiency).

11.
J Hazard Mater ; 399: 123000, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937703

ABSTRACT

With recently increasing the environmental problems and expected energy crisis, it is necessary to synthesis a low-cost, efficient, and UV-light responsive photocatalyst for contaminants' degradation. The nanostructured spinel ferrite Mn0.5Zn0.5-xMgxFe2O4 NPs (x = 0.0, 0.125, 0.25, 0.375 and 0.50) were synthesized via the sol-gel method. The crystallite size was lied in nano regime ranging from 21.8 to 36.5 nm. The surface chemical composition of the Mn0.5Zn0.5-xMgxFe2O4 NPs was investigated via XPS analysis. Mossbauer spectra showed that the peaks were shifted to higher values of the maximum magnetic field as the Mg content increased, indicating that the crystallinity is enhanced while the crystal size is decreased. Also, various parameters such as the photocatalyst dose, dyes concentration, pH, point of zero charge, and the metals leaching were studied. The point of zero charge (PZC) has found at pH = 2.38. The Mn0.5Zn0.125Mg0.375Fe2O4 NPs showed an excellent UV-assisted photocatalytic activity against Chloramine T (90 % removal efficiency) and Rhodamine B (95 % removal efficiency) after 80 min as compared to pure Mn0.5Zn0.5Fe2O4 ferrite NPs. Besides, it a recyclable catalyst at least four times with a negligible reduction of photocatalytic activity with slight elements leaching. Furthermore, the Mn0.5Zn0.25Mg0.25Fe2O4 NPs showed a high antimicrobial activity towards pathogenic bacteria and yeats.


Subject(s)
Anti-Infective Agents , Ferric Compounds , Magnetic Phenomena , Zinc
12.
Int J Biol Macromol ; 165(Pt A): 169-186, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32987079

ABSTRACT

In this research, irradiation by gamma rays was employed as an eco-friendly route for the construction of bimetallic silver-gold nanoparticles (Ag-Au NPs), while Gum Arabic polymer was used as a capping agent. Ag-Au NPs were characterized through UV-Vis., XRD, EDX, HR-TEM, FTIR, SEM/mapping and EDX analysis. Antibiofilm and antimicrobial activities were examined against some bacteria and Candida sp. isolates from diabetic foot patients. Our results revealed that the synthesis of Ag-Au NPs depended on the concentrations of tetra-chloroauric acid and silver nitrate. HR-TEM analysis confirmed the spherical nature and an average diameter of 18.58 nm. FTIR results assured many functional groups in Gum Arabic which assisted in increasing the susceptibility of incorporation with Ag-Au NPs. Our results showed that, Ag-Au NPs exhibited the highest antimicrobial performance against B. subtilis (14.30 mm ZOI) followed by E. coli (12.50 mm ZOI) and C. tropicalis (11.90 mm ZOI). In addition, Ag-Au NPs were able to inhibit the biofilm formation by 99.64%, 94.15%, and 90.79% against B. subtilis, E. coli, and C. tropicalis, respectively. Consequently, based on the promising properties, they showed superior antimicrobial potential at low concentration and continued-phase durability, they can be extensively-used in many pharmaceutical and biomedical applications.


Subject(s)
Anti-Infective Agents/chemical synthesis , Diabetic Foot/drug therapy , Gum Arabic/chemical synthesis , Metal Nanoparticles/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/radiation effects , Bacillus subtilis/drug effects , Biofilms/drug effects , Candida albicans/drug effects , Diabetic Foot/microbiology , Diabetic Foot/pathology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gamma Rays , Gold/chemistry , Green Chemistry Technology , Gum Arabic/chemistry , Gum Arabic/pharmacology , Gum Arabic/radiation effects , Humans , Metal Nanoparticles/radiation effects , Polymers/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Polymers/radiation effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Silver/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
13.
Sci Rep ; 10(1): 11534, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661303

ABSTRACT

Water scarcity is now a serious global issue resulting from population growth, water decrease, and pollution. Traditional wastewater treatment plants are insufficient and cannot meet the basic standards of water quality at reasonable cost or processing time. In this paper we report the preparation, characterization and multiple applications of an efficient photocatalytic nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2/C-dots) synthesized by a layer-by-layer method. Then, the photocatalytic capabilities of the synthesized nanocomposite were extensively-studied against aqueous solutions of chloramine-T trihydrate. In addition, reaction kinetics, degradation mechanism and various parameters affecting the photocatalytic efficiency (nanocomposite dose, chloramine-T initial concentration, and reaction pH) were analyzed in detail. Further, the antimicrobial activities of the prepared nanocomposite were tested and the effect of UV-activation on the antimicrobial abilities of the prepared nanocomposite was analyzed. Finally, a comparison between the antimicrobial abilities of the current nanocomposite and our previously-reported nanocomposite (CoxNi1-xFe2O4; x = 0.9/SiO2/TiO2) had been carried out. Our results revealed that the prepared nanocomposite possessed a high degree of crystallinity, confirmed by XRD, while UV-Vis. recorded an absorption peak at 299 nm. In addition, the prepared nanocomposite possessed BET-surface area of (28.29 ± 0.19 m2/g) with narrow pore size distribution. Moreover, it had semi-spherical morphology, high-purity and an average particle size of (19.0 nm). The photocatalytic degradation efficiency was inversely-proportional to chloramine-T initial concentration and directly proportional to the photocatalyst dose. In addition, basic medium (pH 9) was the best suited for chloramine-T degradation. Moreover, UV-irradiation improved the antimicrobial abilities of the prepared nanocomposite against E. coli, B. cereus, and C. tropicalis after 60 min. The observed antimicrobial abilities (high ZOI, low MIC and more efficient antibiofilm capabilities) were unique compared to our previously-reported nanocomposite. Our work offers significant insights into more efficient water treatment and fosters the ongoing efforts looking at how pollutants degrade the water supply and the disinfection of water-borne pathogenic microorganisms.

14.
Appl Microbiol Biotechnol ; 104(11): 4717-4735, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32285176

ABSTRACT

Neurodegenerative disorders especially Alzheimer's disease (AD) are significantly threatening the public health. Acetylcholinesterase (AChE) inhibitors are compounds of great interest which can be used as effective agents for the symptomatic treatment of AD. Although plants are considered the largest source for these types of inhibitors, the microbial production of AChE inhibitors represents an efficient, easily manipulated, eco-friendly, cost-effective, and alternative approach. This review highlights the recent advances on the microbial production of AChE inhibitors and summarizes all the previously reported successful studies on isolation, screening, extraction, and detecting methodologies of AChE inhibitors from the microbial fermentation, from the earliest trials to the most promising anti-AD drug, huperzine A (HupA). In addition, improvement strategies for maximizing the industrial production of AChE inhibitors by microbes will be discussed. Finally, the promising applications of nano-material-based drug delivery systems for natural AChE inhibitor (HupA) will also be summarized. KEY POINTS: • AChE inhibitors are potential therapies for Alzheimer's disease. • Microorganisms as alternate sources for prospective production of such inhibitors. • Research advances on extraction, detection, and strategies for production improvement. • Nanotechnology-based approaches for an effective drug delivery for Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Bacteria/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/therapeutic use , Drug Delivery Systems , Nanotechnology/methods , Alkaloids/biosynthesis , Alkaloids/isolation & purification , Alkaloids/therapeutic use , Animals , Bacteria/radiation effects , Fermentation , Humans , Mice , Nanostructures/chemistry , Nanostructures/therapeutic use , Sesquiterpenes/isolation & purification , Sesquiterpenes/therapeutic use
15.
RSC Adv ; 10(9): 5241-5259, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-35498317

ABSTRACT

In this paper, we report a layer-by-layer approach for the preparation of a concentric recyclable composite (Co x Ni1-x Fe2O4/SiO2/TiO2; x = 0.9) designed for wastewater treatment. The prepared composite was investigated by X-ray diffraction spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy (SEM) supported with energy dispersive X-ray (EDX) spectroscopy to analyze crystallinity, average particle size, morphology and elemental composition, respectively. The antimicrobial activities of the prepared composite have been investigated against multi-drug-resistant bacteria and pathogenic fungi using a variety of experiments, such as zone of inhibition, minimum inhibitory concentration, biofilm formation and SEM with EDX analysis of the treated bacterial cells. In addition, the effects of gamma irradiation (with different doses) and UV irradiation on the antibacterial abilities of the prepared composite have been evaluated. Moreover, the effect of gamma irradiation on the crystallite size of the prepared composite has been studied under varying doses of radiation (25 kGy, 50 kGy and 100 kGy). Finally, the photocatalytic efficiency of the prepared composite was tested for halogen-lamp-assisted removal of pyridine (artificial wastewater). Various parameters affecting the efficiency of the photocatalytic degradation, such as photocatalyst dose, pyridine concentration, pH, point of zero charge and the presence of hydrogen peroxide, have been studied. Our results show that the synthesized composite has a well-crystallized semi-spherical morphology with an average particle size of 125.84 nm. In addition, it possesses a high degree of purity, as revealed by EDX elemental analysis. Interestingly, the prepared composite showed promising antibacterial abilities against almost all the tested pathogenic bacteria and unicellular fungi, and this was further improved after gamma and UV irradiation. Finally, the prepared composite was very efficient in the light-assisted degradation of pyridine and its degradation efficiency can be tuned based on various experimental parameters. This work provides a revolutionary nanomaterial-based solution for the global water shortage and water contamination by offering a new wastewater treatment technique that is recyclable, cost effective and has an acceptable time and quality of water.

16.
Biol Trace Elem Res ; 196(1): 297-317, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31529241

ABSTRACT

The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol-gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m2/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm3/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.


Subject(s)
Antioxidants/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Nanoparticles/chemistry , Urinary Tract Infections/drug therapy , Zinc Oxide/pharmacology , Animals , Anisotropy , Antioxidants/chemistry , Antioxidants/economics , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/economics , Carcinoma, Ehrlich Tumor/economics , Carcinoma, Ehrlich Tumor/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cost-Benefit Analysis , Humans , Nanoparticles/economics , Particle Size , Picrates/antagonists & inhibitors , Picrates/economics , Surface Properties , Urinary Tract Infections/economics , Zinc Oxide/chemistry , Zinc Oxide/economics
17.
Int J Biol Macromol ; 143: 763-774, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31626822

ABSTRACT

However, labelling of stem cells using nanoparticles (NPs) for tracking purpose has been intensively investigated, the biosafety of these materials needs more clarification. Herein, different forms of iron oxide Fe2O3, Fe3O4, and CoxNi1-x Fe2O4 NPs either uncoated or starch-coated (ST-coated) were prepared. We successfully labelled adipose-derived stem cells (ASCs) using these NPs with the aid of lipofectamine as a transfection agent (TA). We then evaluated the effect of these NPs on stem cell proliferation, viability, migration and angiogenesis. Results showed that ASCs labelled with Fe2O3, Fe3O4, ST-Fe2O3 and ST-Fe3O4 did not show any significant difference in proliferation compared to that of TA-treated cells. Moreover, they have shown a protective effect against apoptosis. Conversely, CoxNi1-x Fe2O4 NPs caused a significant decrease in cell proliferation. Compared to that of the TA-treated cells, the migration capacity of cells labelled with Fe2O3, Fe3O4 and CoxNi1-xFe2O4 was significantly compromised. Interestingly, the ST-coated composites reversed this effect. Among the groups treated with different NPs, the angiogenic potential of the ASCs was most robust in the ST-Fe2O3-treated group. In conclusion, labelling ASCs with ST-Fe2O3 NPs enhanced cell migration and angiogenic potential and conferred higher resistance to apoptosis than labelling the cells with the other tested NPs.


Subject(s)
Cell Tracking , Magnetite Nanoparticles/chemistry , Starch/pharmacology , Stem Cells/cytology , Apoptosis/drug effects , Capillaries/drug effects , Capillaries/growth & development , Cell Movement/drug effects , Cell Survival/drug effects , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/ultrastructure , Neovascularization, Physiologic/drug effects , Spectroscopy, Fourier Transform Infrared , Stem Cells/drug effects , X-Ray Diffraction
18.
Int J Biol Macromol ; 156: 1584-1599, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-31790741

ABSTRACT

The novelty of the present work looks in the synthesis of aqueous dispersed selenium nanoparticles (Se NPs) using gamma rays with the aid of various natural macromolecules such as citrus pectin (CP), sodium alginate (Alg), chitosan (CS) and aqueous extract of fermented fenugreek powder (AEFFP) using Pleurotus ostreatus for investigating their impact in vitro toward carcinoma cell. The synthesized Se NPs were characterized by XRD, UV-Vis., DLS, HRTEM, SEM, EDX and FTIR. Nucleation and growth mechanisms were also discussed. The factorial design was applied to examine the importance of multiple parameters on Se NPs production with a special focus on temperature and gamma rays influences. FTIR spectrum exhibited the existence of several functional groups in Se NPs-capping macromolecules. Results revealed that Se NPs' size was dramatically-influenced by the type of stabilizer, precursors concentration, pH and the absorbed gamma rays dose. The current research reported the promising antitumor application of Se NPs against Ehrlich Ascites Carcinoma (EAC) and human Colon Adenocarcinoma (CACO) in vitro. The proliferation of EAC was significantly-hindered by Se NPs-CS (38.0 µg/ml) at 60 kGy (IC50 = 23.12%) and Se NPs-AEFFP (19.00 µg/ml) at 15 kGy (IC50 = 7.21%). Also, Se NPs control the generation of CACO cells, IC50 was recorded as 25.32% for Se NPs-CS (38.0 µg/ml) and 8.57% for Se NPs-AEFFP (19.00 µg/ml).


Subject(s)
Chitosan/chemistry , Gamma Rays , Nanoparticles/chemistry , Pleurotus/metabolism , Selenium/chemistry , Selenium/pharmacology , Trigonella/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Fermentation , Humans
19.
Front Cell Dev Biol ; 7: 229, 2019.
Article in English | MEDLINE | ID: mdl-31681762

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.

20.
Colloids Surf B Biointerfaces ; 180: 411-428, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31085460

ABSTRACT

Biomedical applications of nanomaterials have received considerable attention and interest from many researchers over the past decade due to the key role they can play in enhancing public health. Different types of nanomaterials possess both diagnostic and therapeutic potential owing to their outstanding properties compared to their bulk counterparts. Herein, we present, analyze and provide significant insights and recent advances about the promising biomedical applications of nanoparticles including bioimaging of biological environments and its role as a significant tool for early detection of many diseases with respect to traditional means, explaining their types and limitations. In addition, different types of nanoparticles acting as effective bio-sensors and detectors of our body have been analyzed. Moreover, the therapeutic potential of different types of nanoparticles and their attractive antimicrobial effects allowing them to act as powerful and new drug substitutes against multi-drug resistant bacteria and pathogenic fungi. Finally, we introduce some nanoparticles as powerful antioxidants and promising candidates in cancer therapeutics. We conclude that this review can give up-to-date information about various biomedical applications of nanoparticles and will be of great value and interest to researchers and scientists of materials science, biology, chemistry, and medicine.


Subject(s)
Biomedical Technology/methods , Nanostructures/therapeutic use , Theranostic Nanomedicine , Biofilms , Biosensing Techniques , Diagnostic Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...