Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Med Genet ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531627

ABSTRACT

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.

2.
J Assist Reprod Genet ; 41(3): 751-756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277113

ABSTRACT

PURPOSE: To investigate the genetic etiology of patients with female infertility. METHODS: Whole Exome Sequencing was performed on genomic DNA extracted from the patient's blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members. RESULTS: A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant. CONCLUSIONS: Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.


Subject(s)
Azoospermia , Cell Cycle Proteins , DNA-Binding Proteins , Infertility, Male , Female , Humans , Azoospermia/genetics , Cell Cycle Proteins/genetics , Homozygote , Infertility, Male/genetics , Meiosis , DNA-Binding Proteins/genetics
3.
Neurogenetics ; 25(2): 93-102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296890

ABSTRACT

Congenital muscular dystrophies (CMDs) are a group of rare muscle disorders characterized by early onset hypotonia and motor developmental delay associated with brain malformations with or without eye anomalies in the most severe cases. In this study, we aimed to uncover the genetic basis of severe CMD in Egypt and to determine the efficacy of whole exome sequencing (WES)-based genetic diagnosis in this population. We recruited twelve individuals from eleven families with a clinical diagnosis of CMD with brain malformations that fell into two groups: seven patients with suspected dystroglycanopathy and five patients with suspected merosin-deficient CMD. WES was analyzed by variant filtering using multiple approaches including splicing and copy number variant (CNV) analysis. We identified likely pathogenic variants in FKRP in two cases and variants in POMT1, POMK, and B3GALNT2 in three individuals. All individuals with merosin-deficient CMD had truncating variants in LAMA2. Further analysis in one of the two unsolved cases showed a homozygous protein-truncating variant in Feline Leukemia Virus subgroup C Receptor 1 (FLVCR1). FLVCR1 loss of function has never been previously reported. Yet, loss of function of its paralog, FLVCR2, causes lethal hydranencephaly-hydrocephaly syndrome (Fowler Syndrome) which should be considered in the differential diagnosis for dystroglycanopathy. Overall, we reached a diagnostic rate of 86% (6/7) for dystroglycanopathies and 100% (5/5) for merosinopathy. In conclusion, our results provide further evidence that WES is an important diagnostic method in CMD in developing countries to improve the diagnostic rate, management plan, and genetic counseling for these disorders.


Subject(s)
Brain , Exome Sequencing , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Humans , Male , Egypt , Female , Muscular Dystrophies/genetics , Muscular Dystrophies/diagnosis , Child, Preschool , Brain/abnormalities , Brain/pathology , Child , Infant , Laminin/genetics , Receptors, Virus/genetics , Mannosyltransferases/genetics , Pedigree , Pentosyltransferases/genetics , DNA Copy Number Variations , Mutation , Adolescent , Nervous System Malformations/genetics
4.
Front Endocrinol (Lausanne) ; 14: 1207425, 2023.
Article in English | MEDLINE | ID: mdl-37600721

ABSTRACT

The HDR syndrome is a rare autosomal dominant disorder characterised by Hypoparathyroidism, Deafness, and Renal dysplasia, and is caused by inactivating heterozygous germline mutations in the GATA3 gene. We report an 11-year-old girl with HDR syndrome caused by a heterozygous mutation located at the splice acceptor site of exon 5 of the GATA3 gene (NM_001002295.2: c.925-1G>T). Functional studies using a minigene assay showed that this splice site mutation abolished the normal splicing of the GATA3 pre-mRNA and led to the use of a cryptic splice acceptor site, resulting in the loss of the first seven nucleotides (TCTGCAG) of exon 5 in the GATA3 mRNA. These findings increase the understanding of the mechanisms by which GATA3 splicing mutations can cause HDR syndrome.


Subject(s)
Deafness , Hypoparathyroidism , Female , Humans , Child , RNA Splice Sites , Hypoparathyroidism/complications , Hypoparathyroidism/genetics , Mutation , GATA3 Transcription Factor/genetics
5.
Br J Dermatol ; 188(2): 259-267, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36763876

ABSTRACT

BACKGROUND: A trio exome sequencing study identified a previously unreported NLRP1 gene variant resulting in a p.Leu813Pro substitution of the LRR (leucine-rich repeats) domain of the NLRP1 protein (NACHT, LRR and PYD domains-containing protein 1). This homozygous mutation was shared by two sisters with different clinical presentation: the younger sister had generalized inflammatory nodules with keratotic plugs, clinically resembling multiple keratoacanthomas, while the older had manifestations of familial keratosis lichenoides chronica. OBJECTIVES: To analyse the consequences of this NLRP1 variant in two siblings with a different clinical spectrum of severity. METHODS: To demonstrate the pathogenicity, p.Leu813Pro was recombinantly expressed, and its effect on inflammasome assembly was assessed. Exome sequencing and RNA-Seq were performed to identify factors with potentially modifying effects on the severity of the skin manifestation between each sibling. RESULTS: The variant p.Leu813Pro triggered activation of the NLRP1 inflammasome leading to ASC (apoptosis-associated speck-like protein containing a CARD) speck formation and interleukin (IL)-1ß release. The more severely affected sister had several additional genomic variants associated with atopy and psoriasis that were not present in her sibling. IL-5 and IL-17 emerged as dominant cytokines driving prominent inflammation in the skin of the severely affected sibling. CONCLUSIONS: To the best of our knowledge, this is the first report of a NLRP1 variant that leads to a different clinical spectrum of severity within the same sibship. IL-5 and IL-17 were the main cytokines expressed in the inflammatory lesions of the severely affected patient and might be regarded as disease modifying factors, and therefore may be considered as therapeutic targets.


Subject(s)
Apoptosis Regulatory Proteins , Inflammasomes , Female , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Cytokines/metabolism , Gain of Function Mutation , Inflammasomes/metabolism , Interleukin-17/metabolism , Interleukin-5/genetics , Interleukin-5/metabolism , NLR Proteins/genetics , NLR Proteins/metabolism , Phenotype , Siblings
6.
Pediatr Dermatol ; 40(1): 113-119, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36670503

ABSTRACT

BACKGROUND/OBJECTIVES: Lipoid proteinosis (LP) is a rare autosomal recessive multisystem disorder that is caused by loss-of-function pathogenic variants in the extracellular matrix protein-1 (ECM1) gene. The typical clinical manifestations of LP include hoarseness of voice, beaded papules on the eyelids, infiltration and scarring of the skin and mucosa, as well as neuropsychological abnormalities. Currently, more than 70 pathogenic variants have been reported, including nonsense, missense, splice site, deletion and insertion pathogenic variants, and more than half of them occurred in exons 6 and 7. METHODS: Clinical evaluation and Sanger sequencing were performed on eight patients from four unrelated Arab families. RESULTS: We identified two novel ECM1 variants, one nonsense pathogenic variant in exon 6 (c.579G>A, p.Trp193*) and a deletion of three nucleotides (c.1390_1392del, p.Glu464del) in exon 9, and two previously reported frameshift variants; c.692_693delAG, in exon 6 and c.11dupC in exon 1. CONCLUSIONS: Although all patients had characteristic manifestations of lipoid proteinosis, we observed intrafamilial phenotypic variability. Our data expand the pathogenic variant spectrum of ECM1 and also supports the fact that exon 6 is one of the most common hot spots of pathological variants in ECM1.


Subject(s)
Arabs , Lipoid Proteinosis of Urbach and Wiethe , Humans , Arabs/genetics , Lipoid Proteinosis of Urbach and Wiethe/genetics , Lipoid Proteinosis of Urbach and Wiethe/pathology , Skin/pathology , Exons , Pedigree , Extracellular Matrix Proteins/genetics
7.
Eur J Med Genet ; 66(3): 104715, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708876

ABSTRACT

Craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-1 (CFSMR1; OMIM#213980) is a rare autosomal recessive disorder characterized by the clinical triad of developmental delay and/or intellectual disability, a typical facial gestalt with brachycephaly, highly-arched bushy eyebrows, synophrys, hypertelorism, wide nasal bridge, and short nose, as well as multiple vertebrae and rib malformations, such as bifid and fused ribs and abnormal vertebral segmentation and fusion. Biallelic loss-of-function variants in TMCO1 cause CFSMR1. We report on two unrelated Egyptian patients with a phenotype suggestive of CFSMR. Single whole-exome sequencing in patient 1 and Sanger sequencing of TMCO1 in patient 2 revealed the same homozygous TMCO1 nonsense variant c.187C > T/p.(Arg63*) in both affected individuals; patients' healthy parents were heterozygous carriers of the variant. Congenital hearing loss in patients 1 and 2 is an occasional finding in individuals affected by CFSMR. Camptodactyly and syndactyly, which were noted in patient 2, have not or rarely been reported in CFSMR. Review of the literature revealed a total of 30 individuals with the clinically recognizable and unique phenotype of CFSMR1, including the patients reported here, who all carried biallelic TMCO1 variants. Six different TMCO1 variants have been reported in the 30 patients from 14 families, comprising three nonsense, two 2-bp deletions, and a splice donor site variant. All disease-associated TMCO1 variants likely represent null alleles resulting in absence of the encoded protein. TMCO1 has been proposed to act as a Ca2+ channel, while other data revealed TMCO1 as a mitochondrial protein and a component of the translocon at the endoplasmic reticulum, a cellular machinery important for the biogenesis of multi-pass membrane proteins. RAB5IF/C20orf24 has recently been identified as causative gene for craniofacial dysmorphism, skeletal anomalies, and impaired intellectual development syndrome-2 (CFSMR2; OMIM#616994). Heterodimerization of RAB5IF/C20orf24 and TMCO1 and their interdependence may suggest a pathophysiological role of ER-mitochondria interaction underlying CFSMR.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Intellectual Disability , Musculoskeletal Abnormalities , Humans , Abnormalities, Multiple/genetics , Calcium Channels/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Musculoskeletal Abnormalities/genetics , Phenotype
8.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077086

ABSTRACT

Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.


Subject(s)
KCNQ1 Potassium Channel , Potassium Channels, Voltage-Gated , Calmodulin/genetics , Gain of Function Mutation , KCNQ1 Potassium Channel/genetics , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/genetics
9.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36084634

ABSTRACT

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Subject(s)
Ciliopathies , Orofaciodigital Syndromes , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Hedgehog Proteins/metabolism , Humans , Introns/genetics , Mutation/genetics , Orofaciodigital Syndromes/genetics , RNA Splicing/genetics , RNA Splicing Factors/metabolism , RNA, Small Interfering/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism
10.
Am J Med Genet A ; 188(8): 2448-2453, 2022 08.
Article in English | MEDLINE | ID: mdl-35451546

ABSTRACT

The cardiofacioneurodevelopmental syndrome (CFNDS) is characterized by craniofacial anomalies including bilateral cleft lip and palate, cardiac, skeletal, and neurodevelopmental features and additional variable manifestations. Whole-exome sequencing revealed homozygous loss-of-function variants in CCDC32 (alternative name: C15orf57) in both previously described patients. ccdc32 deletion in zebrafish suggests a ciliary contribution to the pathomechanism. We report a 9-year-old female patient with CFNDS caused by a homozygous 32,583-bp deletion affecting CCDC32. Independent of the affected CCDC32 transcript variant this deletion likely leads to loss of the encoded protein. The patient had intellectual disability, marked hypertelorism, bilateral cleft lip and palate, and short stature. She had bilateral conductive hearing loss, small hands and feet, and finger abnormalities. Brain imaging disclosed hypoplastic corpus callosum. We describe a core phenotype comprising developmental delay and bilateral cleft lip and palate in the three individuals with CFNDS. Variable abnormalities of the face, brain, heart, fingers, and toes and postnatal growth retardation or microcephaly can be present. Possible involvement of the uncharacterized CCDC32 protein in the adapter protein 2 (AP2) complex regulating clathrin-mediated endocytosis has been reported. Cleft palate and cardiac defects observed in mice deficient of different AP2 subunits support a CCDC32 function in the AP2 complex.


Subject(s)
Cleft Lip , Cleft Palate , Craniofacial Abnormalities , Intellectual Disability , Animals , Cleft Lip/genetics , Cleft Palate/diagnosis , Cleft Palate/genetics , Craniofacial Abnormalities/genetics , Female , Intellectual Disability/genetics , Mice , Phenotype , Zebrafish
12.
Genes (Basel) ; 12(10)2021 09 26.
Article in English | MEDLINE | ID: mdl-34680903

ABSTRACT

Pathogenic variants in the LMNA gene cause a group of heterogeneous genetic disorders, called laminopathies. In particular, homozygous or compound heterozygous variants in LMNA have been associated with "mandibuloacral dysplasia type A" (MADA), an autosomal recessive disorder, characterized by mandibular hypoplasia, growth retardation mainly postnatal, pigmentary skin changes, progressive osteolysis of the distal phalanges and/or clavicles, and partial lipodystrophy. The detailed characteristics of this multisystemic disease have yet to be specified due to its rarity and the limited number of cases described. Here, we report three unrelated Egyptian patients with variable severity of MAD features. Next-generation sequencing using a gene panel revealed a homozygous c.1580G>A-p.Arg527His missense variant in LMNA exon 9 in an affected individual with a typical MADA phenotype. Another homozygous c.1580G>T-p.Arg527Leu variant affecting the same amino acid was identified in two additional patients, who both presented with severe manifestations very early in life. We combined our observations together with data from all MADA cases reported in the literature to get a clearer picture of the phenotypic variability in this disease. This work raises the number of reported MADA families, argues for the presence of the founder effect in Egypt, and strengthens genotype-phenotype correlations.


Subject(s)
Acro-Osteolysis/genetics , Lamin Type A/genetics , Lipodystrophy/genetics , Mandible/abnormalities , Phenotype , Acro-Osteolysis/pathology , Adult , Child , Child, Preschool , Female , Humans , Lipodystrophy/pathology , Male , Mandible/pathology , Mutation, Missense
13.
Int J Mol Sci ; 22(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801777

ABSTRACT

BACKGROUND: Retinitis pigmentosa punctata albescens (RPA) is a particular form of retinitis pigmentosa characterized by childhood onset night blindness and areas of peripheral retinal atrophy. We investigated the genetic cause of RPA in a family consisting of two affected Egyptian brothers with healthy consanguineous parents. METHODS: Mutational analysis of four RPA causative genes was realized by Sanger sequencing on both probands, and detected variants were subsequently genotyped in their parents. Afterwards, found variants were deeply, statistically, and in silico characterized to determine their possible effects and association with RPA. RESULTS: Both brothers carry three missense PRPH2 variants in a homozygous condition (c.910C > A, c.929G > A, and c.1013A > C) and two promoter variants in RHO (c.-26A > G) and RLBP1 (c.-70G > A) genes, respectively. Haplotype analyses highlighted a PRPH2 rare haplotype variant (GAG), determining a possible alteration of PRPH2 binding with melanoregulin and other outer segment proteins, followed by photoreceptor outer segment instability. Furthermore, an altered balance of transcription factor binding sites, due to the presence of RHO and RLBP1 promoter variants, might determine a comprehensive downregulation of both genes, possibly altering the PRPH2 shared visual-related pathway. CONCLUSIONS: Despite several limitations, the study might be a relevant step towards detection of novel scenarios in RPA etiopathogenesis.


Subject(s)
Genetic Variation , Haplotypes , Peripherins/genetics , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinitis Pigmentosa/metabolism , Binding Sites , Carrier Proteins/genetics , Child, Preschool , Computer Simulation , DNA Mutational Analysis , Egypt , Family Health , Humans , Light Signal Transduction , Male , Mutation , Mutation, Missense , Peripheral Nervous System Diseases/metabolism , Protein Folding , Retinal Degeneration/metabolism , rho GTP-Binding Proteins/genetics
14.
Int J Mol Sci ; 22(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374679

ABSTRACT

Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments.


Subject(s)
Genes, Modifier , Ion Channels/genetics , Phenotype , Retinal Dystrophies/genetics , Exome , Female , Humans , Male , Pedigree , Polymorphism, Genetic , Synapses/genetics
15.
Genet Med ; 22(6): 1051-1060, 2020 06.
Article in English | MEDLINE | ID: mdl-32055034

ABSTRACT

PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.


Subject(s)
Bardet-Biedl Syndrome , Ciliopathies , Alleles , Bardet-Biedl Syndrome/genetics , Cilia/genetics , Ciliopathies/genetics , Humans , Sodium Channels
16.
Bone ; 120: 354-363, 2019 03.
Article in English | MEDLINE | ID: mdl-30448303

ABSTRACT

LBR (Lamin B Receptor) encodes a bifunctional protein important for cholesterol biosynthesis and heterochromatin organization on the inner nuclear membrane. Pathogenic variants in LBR are associated with marked phenotypic variability, ranging from the benign Pelger-Huët anomaly to lethal Greenberg Dysplasia. We performed trio exome sequencing (ES) on two patients with atypical variants of skeletal dysplasia and their unaffected parents. Patient 1 exhibited frontal bossing, mid-face hypoplasia, short stature with rhizomelic limb shortening, and relative macrocephaly at birth. Although remained short, Patient 1 later showed spontaneous improvement in her skeletal findings. Exome sequencing revealed two novel variants in LBR, c.1504C > G (p.Arg502Gly) in exon 12 and c.1748G > T (p.Arg583Leu) in exon 14, which were inherited from her unaffected father and mother, respectively. Sterol analysis revealed an increased level of cholesta­8,14­dien­3ß­ol to 2.9% of total sterols, consistent with a functional deficiency of 3ß­hydroxysterol Δ14­reductase. Patient 2 presented at birth with short stature and marked rhizomelic limb shortening but later exhibited decreasing severity of shortening of the long bones and improvement in the radiographic skeletal abnormalities although he continued to be significantly short at age 10 years. Exome sequencing revealed that Patient 2 is homozygous for a pathogenic variant c.1534C > T (p.Arg512Trp) in exon 12 of LBR, which was inherited from his unaffected consanguineous parents. This report provides further evidence for a phenotypic spectrum of LBR-associated disorders and expands the genotypic spectrum by describing 3 novel disease-causing variants that have not been previously associated with a disease. Moreover, our data on Patient 1 demonstrate that variants throughout the gene appear to influence both the sterol reductase and nuclear functions of LBR.


Subject(s)
Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Receptors, Cytoplasmic and Nuclear/genetics , Adult , Base Sequence , Child , Child, Preschool , Evolution, Molecular , Female , Genetic Variation , Humans , Infant , Infant, Newborn , Lymphocytes/metabolism , Male , Osteochondrodysplasias/diagnostic imaging , Pedigree , Phenotype , Lamin B Receptor
17.
Genet Med ; 20(9): 965-975, 2018 09.
Article in English | MEDLINE | ID: mdl-29300384

ABSTRACT

PURPOSE: Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS. METHODS: In a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations. RESULTS: All anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations. CONCLUSION: Knowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.


Subject(s)
Hirschsprung Disease/diagnosis , Hirschsprung Disease/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Facies , Female , Genetic Association Studies/methods , Genotype , Humans , Infant , Male , Mutation , Phenotype , Zinc Finger E-box Binding Homeobox 2/genetics
18.
Genet Med ; 20(1): 42-54, 2018 01.
Article in English | MEDLINE | ID: mdl-28617417

ABSTRACT

PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS.


Subject(s)
Alleles , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Genetic Association Studies , Mutation , Peptidylprolyl Isomerase/genetics , Phenotype , Child , Child, Preschool , Chromosome Mapping , Cohort Studies , DNA Mutational Analysis , Female , Humans , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Male
19.
Am J Med Genet A ; 176(2): 460-464, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29226564

ABSTRACT

Lowe syndrome (LS) is a very rare disorder of phosphatidylinositol metabolism, which manifests with a complex phenotype comprising a clinical triad encompassing major abnormalities of the eyes, the kidneys, and the central nervous system. We are reporting a 23-year-old Egyptian male with a severe phenotype of LS with a minimal kidney disease. Direct sequencing of the OCRL gene detected a p.His375Arg mutation in the catalytic domain of the protein. The patient suffered from bilateral congenital cataracts and glaucoma, striking growth deficiency, severe psychomotor disability, a severe osteopathy, and seizures, but only minimal renal dysfunction. Although the biological mechanisms underlying the pathophysiology of LS manifestations is yet unclear, it has been proposed that growth delay and osteopathy are linked to a renal dysfunction. This report, however, argues this association and suggests that kidney dysfunction may partially explain the growth deficiency and bone abnormalities, but other still undefined factors might have a potential impact.


Subject(s)
Kidney/physiopathology , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adult , Catalytic Domain/genetics , Cataract/genetics , Cataract/physiopathology , Egypt , Glaucoma/genetics , Glaucoma/physiopathology , Humans , Kidney/metabolism , Male , Mutation , Oculocerebrorenal Syndrome/physiopathology , Phenotype , Psychomotor Disorders/genetics , Psychomotor Disorders/physiopathology , Young Adult
20.
J Pediatr Genet ; 6(2): 118-121, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28497002

ABSTRACT

We report a rare congenital limb defect with combined features of both fibular aplasia, tibial campomelia, and oligosyndactyly (FATCO) and Fuhrmann's syndromes. A female newborn infant, born to nonconsanguineous Egyptian parents, presented with isolated abnormalities of the lower limbs comprising bilateral shortening and anterior bowing of the lower limbs at the distal third of the tibia and split foot. Radiographic examination revealed complete absence of both fibulae, anterolateral bowing and shortening of the tibia, bowing of the femora, and absence of several metatarsal and phalangeal bones. The upper limbs were clinically and radiologically normal, and the infant had neither facial dysmorphism nor other associated visceral anomalies. The presented case highlights an extremely rare limb deficiency syndrome, and together with additional case reports, it could be useful to further delineate this condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...