Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10277, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704511

ABSTRACT

This study investigates how amorphous silica (ASi) influences soil-plant-water interactions in distinct soil textures. A sandy loam and silty clay soil were mixed with 0 and 2% ASi, and their impact on soil retention and soil hydraulic conductivity curves were determined. In parallel, tomato plants (Solanum lycopersicum L.) were grown in experimental pots under controlled conditions. When plants were established, the soil was saturated, and a controlled drying cycle ensued until plants reached their wilting points. Soil water content, soil water potential, plant transpiration rate, and leaf water potential were monitored during this process. Results indicate a positive impact of ASi on the sandy loam soil, enhancing soil water content at field capacity (FC, factor of 1.3 times) and at permanent wilting point (PWP, a factor of 3.5 times), while its effect in silty clay loam was negligible (< 1.05 times). In addition, the presence of ASi prevented a significant drop in soil hydraulic conductivity ( K h ) at dry conditions. The K h of ASi-treated sandy loam and silty clay at PWP were 4.3 times higher than their respective control. Transpiration rates in plants grown in ASi-treated sandy loam soil under soil drying conditions were higher than in the control, attributed to improved soil hydraulic conductivity. At the same time, no significant difference was observed in the transpiration of plants treated with ASi in silty clay soil. This suggests ASi boosts soil-plant-water relationships in coarse-textured soils by maintaining heightened hydraulic conductivity, with no significant effect on fine-textured soils.

2.
Nat Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778242

ABSTRACT

The maize root system has been reshaped by indirect selection during global adaptation to new agricultural environments. In this study, we characterized the root systems of more than 9,000 global maize accessions and its wild relatives, defining the geographical signature and genomic basis of variation in seminal root number. We demonstrate that seminal root number has increased during maize domestication followed by a decrease in response to limited water availability in locally adapted varieties. By combining environmental and phenotypic association analyses with linkage mapping, we identified genes linking environmental variation and seminal root number. Functional characterization of the transcription factor ZmHb77 and in silico root modeling provides evidence that reshaping root system architecture by reducing the number of seminal roots and promoting lateral root density is beneficial for the resilience of maize seedlings to drought.

3.
J Exp Bot ; 74(16): 4808-4824, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37409696

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes.


Subject(s)
Mycorrhizae , Symbiosis , Droughts , Water , Mycorrhizae/physiology , Crops, Agricultural , Soil , Plant Roots/microbiology
4.
Front Plant Sci ; 14: 1140938, 2023.
Article in English | MEDLINE | ID: mdl-37008480

ABSTRACT

Carbon-water trade-offs in plants are adjusted through stomatal regulation. Stomatal opening enables carbon uptake and plant growth, whereas plants circumvent drought by closing stomata. The specific effects of leaf position and age on stomatal behavior remain largely unknown, especially under edaphic and atmospheric drought. Here, we compared stomatal conductance (gs ) across the canopy of tomato during soil drying. We measured gas exchange, foliage ABA level and soil-plant hydraulics under increasing vapor pressure deficit (VPD). Our results indicate a strong effect of canopy position on stomatal behavior, especially under hydrated soil conditions and relatively low VPD. In wet soil (soil water potential > -50 kPa), upper canopy leaves had the highest gs (0.727 ± 0.154 mol m-2 s-1) and assimilation rate (A; 23.4 ± 3.9 µmol m-2 s-1) compared to the leaves at a medium height of the canopy (gs : 0.159 ± 0.060 mol m2 s-1; A: 15.9 ± 3.8 µmol m-2 s-1). Under increasing VPD (from 1.8 to 2.6 kPa), gs , A and transpiration were initially impacted by leaf position rather than leaf age. However, under high VPD (2.6 kPa), age effect outweighed position effect. The soil-leaf hydraulic conductance was similar in all leaves. Foliage ABA levels increased with rising VPD in mature leaves at medium height (217.56 ± 85 ng g-1 FW) compared to upper canopy leaves (85.36 ± 34 ng g-1 FW). Under soil drought (< -50 kPa), stomata closed in all leaves resulting in no differences in gs across the canopy. We conclude that constant hydraulic supply and ABA dynamics facilitate preferential stomatal behavior and carbon-water trade-offs across the canopy. These findings are fundamental in understanding variations within the canopy, which helps in engineering future crops, especially in the face of climate change.

5.
Plant Physiol ; 190(2): 1228-1241, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35579362

ABSTRACT

Salinity and soil drying are expected to induce salt accumulation at the root-soil interface of transpiring plants. However, the consequences of this on the relationship between transpiration rate (E) and leaf xylem water potential (ψleaf-x) are yet to be quantified. Here, we used a noninvasive root pressure chamber to measure the E(ψleaf-x) relationship of tomato (Solanum lycopersicum L.) treated with (saline) or without 100-mM NaCl (nonsaline conditions). The results were reproduced and interpreted with a soil-plant hydraulic model. Under nonsaline conditions, the E(ψleaf-x) relationship became progressively more nonlinear as the soil dried (θ ≤ 0.13 cm3 cm-3, ψsoil = -0.08 MPa or less). Under saline conditions, plants exhibited an earlier nonlinearity in the E(ψleaf-x) relationship (θ ≤ 0.15 cm3 cm-3, ψsoil = -0.05 MPa or less). During soil drying, salinity induced a more negative ψleaf-x at predawn, reduced transpiration rate, and caused a reduction in root hydraulic conductance (from 1.48 × 10-6 to 1.30 × 10-6 cm3 s-1 hPa-1). The model suggested that the marked nonlinearity was caused by salt accumulation at the root surface and the consequential osmotic gradients. In dry soil, most water potential dissipation occurred in the bulk soil and rhizosphere rather than inside the plant. Under saline-dry conditions, the loss in osmotic potential at the root surface was the preeminent component of the total dissipation. The physical model of water flow and solute transport supports the hypothesis that a buildup of osmotic potential at the root-soil interface causes a large drop in ψleaf-x and limits transpiration rate under drought and salinity.


Subject(s)
Soil , Solanum lycopersicum , Plant Leaves , Plant Roots , Plant Transpiration , Plants , Salinity , Sodium Chloride , Water
6.
Plant Cell Environ ; 45(3): 650-663, 2022 03.
Article in English | MEDLINE | ID: mdl-35037263

ABSTRACT

Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.


Subject(s)
Soil , Water , Desiccation , Phenotype , Plant Roots/chemistry , Plant Transpiration , Water/analysis
7.
Ann Bot ; 129(2): 161-170, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34871349

ABSTRACT

BACKGROUND AND AIMS: Stomatal closure allows plants to promptly respond to water shortage. Although the coordination between stomatal regulation, leaf and xylem hydraulics has been extensively investigated, the impact of below-ground hydraulics on stomatal regulation remains unknown. METHODS: We used a novel root pressure chamber to measure, during soil drying, the relation between transpiration rate (E) and leaf xylem water pressure (ψleaf-x) in tomato shoots grafted onto two contrasting rootstocks, a long and a short one. In parallel, we also measured the E(ψleaf-x) relation without pressurization. A soil-plant hydraulic model was used to reproduce the measurements. We hypothesize that (1) stomata close when the E(ψleaf-x) relation becomes non-linear and (2) non-linearity occurs at higher soil water contents and lower transpiration rates in short-rooted plants. KEY RESULTS: The E(ψleaf-x) relation was linear in wet conditions and became non-linear as the soil dried. Changing below-ground traits (i.e. root system) significantly affected the E(ψleaf-x) relation during soil drying. Plants with shorter root systems required larger gradients in soil water pressure to sustain the same transpiration rate and exhibited an earlier non-linearity and stomatal closure. CONCLUSIONS: We conclude that, during soil drying, stomatal regulation is controlled by below-ground hydraulics in a predictable way. The model suggests that the loss of hydraulic conductivity occurred in soil. These results prove that stomatal regulation is intimately tied to root and soil hydraulic conductances.


Subject(s)
Plant Transpiration , Water , Plant Leaves/physiology , Plant Roots/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Soil , Water/physiology , Xylem/physiology
8.
Front Plant Sci ; 12: 722954, 2021.
Article in English | MEDLINE | ID: mdl-34721455

ABSTRACT

Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below -0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below -1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures.

9.
Plant Physiol ; 187(2): 858-872, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34608949

ABSTRACT

Although the role of root hairs (RHs) in nutrient uptake is well documented, their role in water uptake and drought tolerance remains controversial. Maize (Zea mays) wild-type and its hair-defective mutant (Mut; roothairless 3) were grown in two contrasting soil textures (sand and loam). We used a root pressure chamber to measure the relation between transpiration rate (E) and leaf xylem water potential (ψleaf_x) during soil drying. Our hypotheses were: (1) RHs extend root-soil contact and reduce the ψleaf_x decline at high E in dry soils; (2) the impact of RHs is more pronounced in sand; and (3) Muts partly compensate for lacking RHs by producing longer and/or thicker roots. The ψleaf_x(E) relation was linear in wet conditions and became nonlinear as the soils dried. This nonlinearity occurred more abruptly and at less negative matric potentials in sand (ca. -10 kPa) than in loam (ca. -100 kPa). At more negative soil matric potentials, soil hydraulic conductance became smaller than root hydraulic conductance in both soils. Both genotypes exhibited 1.7 times longer roots in loam, but 1.6 times thicker roots in sand. No differences were observed in the ψleaf_x(E) relation and active root length between the two genotypes. In maize, RHs had a minor contribution to soil-plant hydraulics in both soils and their putative role in water uptake was smaller than that reported for barley (Hordeum vulgare). These results suggest that the role of RHs cannot be easily generalized across species and soil textures affect the response of root hydraulics to soil drying.


Subject(s)
Droughts , Plant Roots/physiology , Soil/chemistry , Water/metabolism , Xylem/physiology , Zea mays/physiology , Biological Transport , Plant Roots/anatomy & histology
10.
Plant Cell Environ ; 44(2): 425-431, 2021 02.
Article in English | MEDLINE | ID: mdl-33150971

ABSTRACT

The fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil-plant hydraulic conductance (Ksp ) on transpiration (E) and stomatal regulation. We used a root pressure chamber to measure the relation between E, leaf xylem water potential (ψleaf-x ) and soil water potential (ψsoil ) in tomato. Additional measurements of ψleaf-x were performed with unpressurized plants. A soil-plant hydraulic model was used to simulate E(ψleaf-x ) for decreasing ψsoil . In wet soils, E(ψleaf-x ) had a constant slope, while in dry soils, the slope decreased, with ψleaf-x rapidly and nonlinearly decreasing for moderate increases in E. The ψleaf-x measured in pressurized and unpressurized plants matched well, which indicates that the shoot hydraulic conductance did not decrease during soil drying and that the decrease in Ksp is caused by a decrease in soil-root conductance. The decrease of E matched well the onset of hydraulic nonlinearity. Our findings demonstrate that stomatal closure prevents the drop in ψleaf-x caused by a decrease in Ksp and elucidate a strong correlation between stomatal regulation and belowground hydraulic limitation.


Subject(s)
Plant Transpiration/physiology , Solanum lycopersicum/physiology , Dehydration , Droughts , Plant Leaves/physiology , Plant Roots/physiology , Plant Stomata/physiology , Soil/chemistry , Water/physiology , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...