Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 22, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110786

ABSTRACT

BACKGROUND: Salinity is one of the main abiotic factors that restrict plant growth, physiology, and crop productivity is salt stress. About 33% of the total irrigated land suffers from severe salinity because of intensive underground water extraction and irrigation with brackish water. Thus, it is important to understand the genetic mechanism and identify the novel genes involved in salt tolerance for the development of climate-resilient rice cultivars. METHODS AND RESULTS: In this study, two rice genotypes with varying tolerance to salt stress were used to investigate the differential expressed genes and molecular pathways to adapt under saline soil by comparative RNA sequencing at 42 days of the seedling stage. Salt-susceptible (S3) and -tolerant (S13) genotypes revealed 3982 and 3463 differentially expressed genes in S3 and S13 genotypes. The up-regulated genes in both genotypes were substantially enriched in different metabolic processes and binding activities. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and plant signal transduction mechanisms were highly enriched. Salt-susceptible and -tolerant genotypes shared the same salt adaptability mechanism with no significant quantitative differences at the transcriptome level. Moreover, bHLH, ERF, NAC, WRKY, and MYB transcription factors were substantially up-regulated under salt stress. 391 out of 1806 identified novel genes involved in signal transduction mechanisms. Expression profiling of six novel genes further validated the findings from RNA-seq data. CONCLUSION: These findings suggest that the differentially expressed genes and molecular mechanisms involved in salt stress adaptation are conserved in both salt-susceptible and salt-tolerant rice genotypes. Further molecular characterization of novel genes will help to understand the genetic mechanism underlying salt tolerance in rice.


Subject(s)
Oryza , Transcriptome , Transcriptome/genetics , Oryza/metabolism , Gene Expression Profiling , Salt Stress , Genotype , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics
2.
Saudi J Biol Sci ; 28(8): 4109-4116, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34354389

ABSTRACT

Photoperiod and thermosensitive genetic male sterile (PTGMS) lines have become one of the main sources of global rice production increasing. This study was conducted to evaluate the fertility alteration and validate the male sterility genes using validation markers in novel Egyptian Indica and Japonica PTGMS lines under natural conditions. The study revealed that the new genetic male sterile lines belong to the type of photo-thermosensitive genetic male sterility (PTGMS). The fertility alteration of these lines has influenced by photoperiod and temperature interaction. The new PTGMS lines have three sensitive periods of fertility alteration; transformation, sterility, and fertility period. Furthermore, the sensitive stage of fertility transformation might be from secondary branch primordial to pollen mother cells (PMC) meiosis. Under the natural Sakha condition, the new PTGMS lines were stable sterile under the condition of day length upper 13,75 h and temperature over 25 °C, while its convert to fertile under day length under 13 h, and temperature lower than 24 °C. The co-dominant markers identified the pms3 and tms5 genes in the new PTGMS lines, indicated that the fertility alteration in these lines controlled by photoperiod and thermosensitive stages.

SELECTION OF CITATIONS
SEARCH DETAIL
...