Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37177374

ABSTRACT

This study examines the effects of alkaline treatment on the mechanical and thermal properties of miswak fiber-reinforced polylactic acid. The treatment was performed with three distinct concentrations of sodium hydroxide (NaOH): 1 wt %, 2 wt %, and 3 wt %. The difficulties of interaction between the surface of the fiber and the matrix, which led to this treatment, is caused by miswak fiber's hydrophilic character, which impedes its ability to bind with hydrophobic polylactic acid. FTIR, tensile, TGA, and DMA measurements were used to characterize the composite samples. A scanning electron microscope (SEM) was used to examine the microstructures of many broken samples. The treatment is not yet especially effective in enhancing interfacial bonding, as seen by the uneven tensile strength data. The effect of the treated fiber surface significantly improves the tensile strength of miswak fiber-reinforced PLA composites. Tensile strength improves by 18.01%, 6.48%, and 14.50%, respectively, for 1 wt %, 2 wt %, and 3 wt %. Only 2 wt %-treated fiber exhibits an increase of 0.7% in tensile modulus. The modulus decreases by 4.15 % at 1 wt % and by 19.7% at 3 wt %, respectively. The TGA curve for alkali-treated fiber composites demonstrates a slight increase in thermal stability when compared to untreated fiber composites at high temperatures. For DMA, the composites with surface treatment have higher storage moduli than the composite with untreated miswak fiber, especially for the PLA reinforced with 2 wt % alkali miswak fiber, proving the effectiveness of the treatment.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049336

ABSTRACT

The use of natural reducing and capping agents has gained importance as a way to synthesize nanoparticles (NPs) in an environmentally sustainable manner. Increasing numbers of studies have been published on the green synthesis of NPs using natural sources such as bacteria, fungi, and plants. In recent years, the use of honey in the synthesis of metal and metal oxide NPs has become a new and promising area of research. Honey acts as both a stabilizing and reducing agent in the NP synthesis process and serves as a precursor. This review focuses on the use of honey in the synthesis of silver NPs (Ag-NPs) and zinc oxide NPs (ZnO-NPs), emphasizing its role as a reducing and capping agent. Additionally, a comprehensive examination of the bio-based reducing and capping/stabilizing agents used in the honey-mediated biosynthesis mechanism is provided. Finally, the review looks forward to environmentally friendly methods for NP synthesis.

3.
Polymers (Basel) ; 14(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35745884

ABSTRACT

Enhanced awareness of the environment and environmental conservation has inspired researchers to search for replacements for the use of volatile organic compounds in the processing of polymers. Recently, ionic liquids have been utilized as solvents for solvating natural and synthetic biodegradable polymers since they are non-volatile, recyclable, and non-flammable. They have also been utilized to prepare electrospun fibers from biodegradable polymers. In this concise review, examples of natural and synthetic biodegradable polymers that are generally employed as materials for the preparation of electrospun fibers are shown. In addition, examples of ionic liquids that are utilized in the electrospinning of biodegradable polymers are also displayed. Furthermore, the preparations of biodegradable polymer electrospinning solutions utilizing ionic liquids are demonstrated. Additionally, the properties of electrospun biodegradable polymer fibers assisted by different ionic liquids are also concisely reviewed. Besides this, the information acquired from this review provides a much deeper understanding of the preparation of electrospinning solutions and the essential properties of electrospun biodegradable polymer fibers. In summary, this concise review discovered that different functions (solvent or additive) of ionic liquids could provide distinct properties to electrospun fibers.

4.
Polymers (Basel) ; 13(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34833277

ABSTRACT

Yields of carbonaceous char with a high surface area were enhanced by decreasing the temperature to improve the conversion of hazardous plastic polypropylene (PP), the major component in abundantly used isolation gowns. This study applied pyrolysis with different low pyrolytic temperatures to convert disinfected PP-based isolation gown waste (PP-IG) into an optimised amount of char yields. A batch reactor with a horizontal furnace was used to mediate the thermal decomposition of PP-IG. Enhanced surface area and porosity value of PP-IG derived char were obtained via an optimised slow pyrolysis approach. The results showed that the amount of yielded char was inversely proportional to the temperature. This process relied heavily on the process parameters, especially pyrolytic temperature. Additionally, as the heating rate decreased, as well as longer isothermal residence time, the char yields were increased. Optimised temperature for maximum char yields was recorded. The enhanced SBET values for the char and its pore volume were collected, ~24 m2 g-1 and ~0.08 cm3 g-1, respectively. The char obtained at higher temperatures display higher volatilisation and carbonisation. These findings are beneficial for the utilisation of this pyrolysis model in plastic waste management and conversion of PP-IG waste into char for further activated carbon and fuel briquettes applications, with the enhanced char yields, amidst the COVID-19 pandemic.

5.
Foods ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34574242

ABSTRACT

Nanoemulsions (NEs) have been used in a wide range of products, such as those produced by the food, cosmetics, and pharmaceutical industries, due to their stability and long shelf life. In the present study, stingless bee honey (SBH) NEs were formulated using SBH, oleic acid, tween 80, glycerol, and double-distilled water. SBH NEs were prepared using a high-pressure homogeniser and were characterised by observing their stability and droplet size. Fourier Transform-Infrared (FTIR) analysis was used to observe the functional groups of the SBH NEs after being subjected to high-pressure homogenisation. Transmission Electron Microscopy (TEM) images were then used to confirm the particle size of the SBH NEs and to investigate their morphology. The effects of the independent variables (percentage of oleic acid, storage time, and storage temperature) on the response variables (particle size and polydispersity index) were investigated using the response surface methodology, along with a three-level factorial design. The results showed that the models developed via the response surface methodology were reliable, with a coefficient of determination (R2) of more than 0.90. The experimental validation indicated an error of less than 10% in the actual results compared to the predicted results. The FTIR analysis showed that SBH NEs have the same functional group as SBH. Observation through TEM indicated that the SBH NEs had a similar particle size, which was between 10 and 100 nm. Thus, this study shows that SBH NEs can be developed using a high-pressure homogeniser, which indicates a new direction for SBH by-products.

6.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451137

ABSTRACT

Biodegradable polymers are an exceptional class of polymers that can be decomposed by bacteria. They have received significant interest from researchers in several fields. Besides this, biodegradable polymers can also be incorporated with fillers to fabricate biodegradable polymer composites. Recently, a variety of ionic liquids have also been applied in the fabrication of the polymer composites. In this brief review, two types of fillers that are utilized for the fabrication of biodegradable polymer composites, specifically organic fillers and inorganic fillers, are described. Three types of synthetic biodegradable polymers that are commonly used in biodegradable polymer composites, namely polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL), are reviewed as well. Additionally, the influence of two types of ionic liquid, namely alkylimidazolium- and alkylphosphonium-based ionic liquids, on the mechanical, thermal, and chemical properties of the polymer composites, is also briefly reviewed. This review may be beneficial in providing insights into polymer composite investigators by enhancing the properties of biodegradable polymer composites via the employment of ionic liquids.

7.
Polymers (Basel) ; 13(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34301116

ABSTRACT

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.

8.
Molecules ; 26(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406627

ABSTRACT

An enhancement of environmental concern lately has improved the awareness of researchers in employing eco-friendly solvents for processing biopolymers. Recently, ionic liquids have been utilized to prepare biopolymer blends as they are non-volatile and recyclable. Biopolymers such as cellulose, chitin, chitosan, keratin, lignin, silk, starch, and zein are widely used for the preparation of biopolymer blends via dissolution in ionic liquids, followed by coagulation procedure. In this concise review, three types of ionic liquids based on imidazolium cations combined with different counter anions that are frequently utilized to prepare biopolymer blends are described. Moreover, three types of biopolymer blends that are prepared in ionic liquids were classified, specifically polysaccharide/polysaccharide blends, polysaccharide/polypeptide blends, and polysaccharide/bioplastic blends. The physicochemical properties of biopolymer blends prepared in different imidazolium-based ionic liquids are also concisely reviewed. This paper may assist the researchers in the polymer blend area and generate fresh ideas for future research.


Subject(s)
Biopolymers/chemistry , Ionic Liquids/chemistry , Solvents/chemistry , Chemical Phenomena
9.
Polymers (Basel) ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396733

ABSTRACT

The thermal, thermo-mechanical and flammability properties of kenaf core hybrid polymer nanocomposites reinforced with unbleached and bleached nanocrystalline cellulose (NCC) were studied. The studied chemical composition found that unbleached NCC (NCC-UB) had 90% more lignin content compared to bleached NCC (NCC-B). Nanocelluloses were incorporated within polypropylene (PP) as the matrix, together with kenaf core as a main reinforcement and maleic anhydride grafted polypropylene (MAPP) as a coupling agent via a melt mixing compounding process. The result showed that the thermal stability of the nanocomposites was generally affected by the presence of lignin in NCC-UB and sulfate group on the surface of NCC-B. The residual lignin in NCC-UB appeared to overcome the poor thermal stability of the composites that was caused by sulfation during the hydrolysis process. The lignin helped to promote the late degradation of the nanocomposites, with the melting temperature occurring at a relatively higher temperature of 219.1 °C for PP/NCC-UB, compared to 185.9 °C for PP/NCC-B. Between the two types of nanocomposites, PP/NCC-B had notably lower thermo-mechanical properties, which can be attributed to the poor bonding and dispersion properties of the NCC-B in the nanocomposites blend. The PP/NCC-UB showed better thermal properties due to the effect of residual lignin, which acted as a compatibilizer between NCC-UB and polymer matrix, thus improved the bonding properties. The residual lignin in PP/NCC-UB helped to promote char formation and slowed down the burning process, thus increasing the flame resistance of the nanocomposites. Overall, the residual lignin on the surface of NCC-UB appeared to aid better stability on the thermal and flammability properties of the nanocomposites.

10.
J Sci Food Agric ; 98(4): 1310-1324, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28758207

ABSTRACT

BACKGROUND: Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. RESULTS: The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. CONCLUSION: Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry.


Subject(s)
Computers , Desiccation/methods , Ipomoea batatas , Neural Networks, Computer , Plant Tubers/anatomy & histology , Desiccation/instrumentation , Lasers , Light , Optical Devices , Scattering, Radiation , Temperature
11.
Polymers (Basel) ; 9(5)2017 May 05.
Article in English | MEDLINE | ID: mdl-30970843

ABSTRACT

This work investigated the effect of maleic anhydride (MA)-modified poly(lactic acid) (PLA), which is melt-blended with different untreated and aqueous borax (BR)-treated hybrid oil palm empty fruit bunch fibers (EFBF)/Kenaf core fibers (KCF), and compression-molded into corresponding hybrid biocomposites. These hybrid systems includes BR-treated EFBF/BR-treated KCF reinforced MA-modified PLA i.e., BR(EFBF-KCF)-MAPLA, BR-treated EFBF/BR-treated KCF reinforced unmodified PLA i.e., BR(EFBF-KCF)-PLA, untreated EFBF/untreated KCF reinforced MA-modified PLA i.e., EFBF-KCF-MAPLA, and untreated EFBF/untreated KCF reinforced unmodified PLA i.e., EFBF-KCF-PLA respectively. Characterizations of the hybrid systems revealed that optimal mechanical, physical, morphological, thermal and dynamic mechanical properties were provided by the BR(EFBF-KCF)-MAPLA, resulting from improved interface adhesion, consequent of the synergistic influence of BR treatment of natural fibers, and the compatibilization effect provided by the MA-modified PLA. The grafting degree and efficiency of MA onto the PLA backbone was appreciable, as indicated by direct titration, and through monitoring using Fourier Transform Infrared Spectroscopy (FTIR); thus the MA-modified PLA facilitated the formation of strong interface adhesion with the BR-treated hybrid fibers. The BR(EFBF-KCF)-MAPLA showed promising properties for usage as a bio-inspired, and sustainable alternative fiberboard article.

12.
Compr Rev Food Sci Food Saf ; 15(3): 599-618, 2016 May.
Article in English | MEDLINE | ID: mdl-33401820

ABSTRACT

The drying of fruits and vegetables is a complex operation that demands much energy and time. In practice, the drying of fruits and vegetables increases product shelf-life and reduces the bulk and weight of the product, thus simplifying transport. Occasionally, drying may lead to a great decrease in the volume of the product, leading to a decrease in storage space requirements. Studies have shown that dependence purely on experimental drying practices, without mathematical considerations of the drying kinetics, can significantly affect the efficiency of dryers, increase the cost of production, and reduce the quality of the dried product. Thus, the use of mathematical models in estimating the drying kinetics, the behavior, and the energy needed in the drying of agricultural and food products becomes indispensable. This paper presents a comprehensive review of modeling thin-layer drying of fruits and vegetables with particular focus on thin-layer theories, models, and applications since the year 2005. The thin-layer drying behavior of fruits and vegetables is also highlighted. The most frequently used of the newly developed mathematical models for thin-layer drying of fruits and vegetables in the last 10 years are shown. Subsequently, the equations and various conditions used in the estimation of the effective moisture diffusivity, shrinkage effects, and minimum energy requirement are displayed. The authors hope that this review will be of use for future research in terms of modeling, analysis, design, and the optimization of the drying process of fruits and vegetables.

13.
ScientificWorldJournal ; 2015: 293609, 2015.
Article in English | MEDLINE | ID: mdl-26167523

ABSTRACT

Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R (2)) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m(2), respectively.


Subject(s)
Biocompatible Materials/chemistry , Bombacaceae/chemistry , Cellulose/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Algorithms , Mechanical Phenomena , Microscopy, Electron, Scanning , Models, Theoretical , Polyesters , Spectroscopy, Fourier Transform Infrared , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...