Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 355: 141668, 2024 May.
Article in English | MEDLINE | ID: mdl-38490614

ABSTRACT

Oily wastewater from the oil industry and oil spill accidents has become a serious environmental problem and has attracted worldwide attention. The present study reports on the successful preparation of a novel magnetic Ni-Al oxide/Zn0.4Co0.6F2O4 mesoporous aerogel (MNA) as a highly selective adsorbent for oil removal from water. Oleic acid (OA) and Triton X-100 (TX) were used as hydrophobic agents for MNA surface modification. It was found that the attached amount of OA on the mesoporous MNA aerogel is 3.5 times larger than that of TX, giving an advantage to MNA-OA in oil separation. The MNA-OA displayed superhydrophobicity (contact angle ∼150°) and superparamagnetism properties that allowed the adsorbent to be used selectively for oil removal. The MNA-OA was found to have a high oil removal efficiency of ∼97% with an adsorption capacity of ∼2 g/g. Furthermore, the produced magnetic adsorbent has high stability due to the strong chemical binding of OA, which is demonstrated by its good reusability performance. Throughout five separate runs, the MNA-OA was shown to be a very efficient and reusable adsorbent for oily wastewater.


Subject(s)
Oxides , Wastewater , Water , Octoxynol , Magnetic Iron Oxide Nanoparticles , Zinc
2.
Environ Sci Pollut Res Int ; 30(54): 116214-116226, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37910365

ABSTRACT

Innovative technologies are needed to enhance access to clean water and avoid waterborne diseases. We investigated the performance of cold atmospheric plasma (CAP), a clean and sustainable approach for microbial inactivation and total organic carbon (TOC) degradation in environmental water. Water matrices played a crucial role in the performance of CAP efficacy; for example, complete removal of ɸX174 from dH2O required 1 min of treatment, while ɸX174 reductions of ~ 2log10 and 4log10 were obtained after 10 min of CAP exposure in river water and wastewater samples, respectively. Similarly, after 10 min of CAP treatment, bacterial concentrations decreased by 3 log10 and 4 log10, in river and wastewater samples, respectively. In contrast, after 30 s of contact time, a 4 log10 reduction of bacteria was accomplished in dH2O. Complete removal of Acanthamoeba from dH2O was found after 30 min of CAP treatment, whereas it was not removed from surface water or wastewater at the same exposure time. Additionally, the approach successfully reduced TOC, and the degradation kinetics of TOC were represented by pseudo-first-order. CAP showed higher rates of TOC degradation in the final effluent of the wastewater treatment plant compared to surface water. The difference in CAP performance between river water and wastewater could be attributed to the bulk structure of humic acids in river water compared to small organic byproducts in the final effluent of WWTP. Overall, the findings reported here support the idea that CAP holds promise as a sustainable solution for controlling pathogens, removing organic water pollution, and integrating with traditional purification processes. Low-cost systems may advance CAP technology and increase its widespread use.


Subject(s)
Environmental Pollutants , Viruses , Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid , Rivers , Bacteria , Water Pollutants, Chemical/analysis , Water
3.
RSC Adv ; 13(36): 24887-24898, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37614786

ABSTRACT

Sugar beet crown (SBC) waste was employed to produce sustainable activated carbon (AC) by a thermo-chemical activation procedure using a fixed ratio of H3PO4/SBC (1 : 1 w/w ratio) at 550 °C/2 h. An activated carbon/polyamide nano-composite (AC/PA) was also prepared through the polymerization of the fabricated AC (90%) with polyamide (PA, 10%) synthetic textile waste using a proper dissolving agent at a specified w/w ratio with the employed polymer (formic acid/PA = 82/18%). Both AC and its derivative AC/PA were employed in the remediation of dyes from industrial wastewater in column systems, and their efficiencies were compared at various applied experimental conditions. The adsorption of the industrial dye waste (IDW) was a pH-, flow rate-, and bed thickness-controlled process by the regarded adsorbents. Kinetic studies confirmed the suitability of the Thomas equation over the Yoon and Nelson model in predicting the dynamic adsorption process of IDW by AC and AC/PA as was assured by the close agreement among the calculated and experimental uptake capacities of both adsorbents at the same applied flow rates, suggesting the chemisorption nature of IDW adsorption. Additionally, electrostatic attraction was the leading mechanism of IDW adsorption by AC and AC/PA composite with some advantages of the former over the latter.

4.
RSC Adv ; 13(32): 22054-22060, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37483670

ABSTRACT

An antimony tri-sulfide Sb2S3 nanosphere photocatalyst was effectively deposited utilizing sodium thiosulfate and antimony chloride as the starting precursors in a chemical bath deposition process. This approach is appropriate for the large-area depositions of Sb2S3 at low deposition temperatures without the sulfurization process since it is based on the hydrolytic decomposition of starting compounds in aqueous solution. X-ray diffraction patterns and Raman spectroscopy analysis revealed the formation of amorphous Sb2S3 layers. The scanning electron microscopy images revealed that the deposited Sb2S3 has integrated small nanospheres into sub-microspheres with a significant surface area, resulting in increased photocatalytic activity. The optical direct bandgap of the Sb2S3 layer was estimated to be about 2.53 eV, making amorphous Sb2S3 appropriate for the photodegradation of organic pollutants in the presence of solar light. The possibility of using the prepared Sb2S3 layer in the photodegradation of methylene blue aqueous solutions was investigated. The degradation of methylene blue dye was performed to evaluate the photocatalytic property of Sb2S3 under visible light. The amorphous Sb2S3 exhibited photocatalytic activity for the decolorization of methylene blue solution under visible light. The mechanism for the photocatalytic degradation of methylene blue has been proposed. Our results suggest that the amorphous Sb2S3 nanospheres are valuable material for addressing environmental remediation issues.

5.
Discov Nano ; 18(1): 68, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37382722

ABSTRACT

Nanotechnologies have been advantageous in many sectors and gaining much concern due to the unique physical, chemical and biological properties of nanomaterials (NMs). We have surveyed peer-reviewed publications related to "nanotechnology", "NMs", "NMs water treatment", "NMs air treatment", and "NMs environmental risk" in the last 23 years. We found that most of the research work is focused on developing novel applications for NMs and new products with peculiar features. In contrast, there are relatively few of publications concerning NMs as environmental contaminants relative to that for NMs applications. Thus, we devoted this review for NMs as emerging environmental contaminants. The definition and classification of NMs will be presented first to demonstrate the importance of unifying the NMs definition. The information provided here should facilitate the detection, control, and regulation of NMs contaminants in the environment. The high surface-area-to-volume ratio and the reactivity of NMs contaminants cause the prediction of the chemical properties and potential toxicities of NPs to be extremely difficult; therefore, we found that there are marked knowledge gaps in the fate, impact, toxicity, and risk of NMs. Consequently, developing and modifying extraction methods, detection tools, and characterization technologies are essential for complete risk assessment of NMs contaminants in the environment. This will help also in setting regulations and standards for releasing and handling NMs as there are no specific regulations. Finally, the integrated treatment technologies are necessary for the removal of NMs contaminants in water. Also, membrane technology is recommended for NMs remediation in air.

6.
Sci Rep ; 13(1): 3500, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859508

ABSTRACT

In Egypt, pharmaceuticals consumption increased dramatically owing to the population growth and the unrestricted sale manner. Accordingly, the occurrence and fate of nine common pharmaceutical active compounds (PhACs) were scrutinized at a sewage treatment plant (STP) in Giza, Egypt. The levels of these PhACs were assessed in different the wastewater treatment stages and dewatered sludge phase using high-performance liquid chromatography coupled with photodiode arrays detector. The average concentrations of the total PhACs detected in influent, primary sedimentation effluent (PSE) and final effluent (FE) were 227, 155 and 89 µg L-1, respectively. The overall removal efficiency of the individual PhACs ranged from 18 to 72% removal. The occurrence trend revealed that biodegradation and adsorption are the concurrently removal mechanisms of the studied PhACs. The overall consumption per day in West of Greater Cairo was estimated based on influent concentration of STP. Sulfamethoxazole, paracetamol and diclofenac were detected with the highest levels in the influent of STP, PSE and FE as well as in the dewatered sludge. Furthermore, the high concentrations of these compounds in the sludge confirm the adsorption pathway removal of theses PhACs. The risk quotient (RQ) assessment for the detected PhACs in FE is greatly higher than the predicted non-effect concentration (PNEC). Conclusively, the FE of STP is considered a risky source for PhACs in adjacent surface water.


Subject(s)
Acetaminophen , Sewage , Adsorption , Biodegradation, Environmental , Pharmaceutical Preparations
7.
Sci Rep ; 12(1): 9850, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701491

ABSTRACT

This study aimed to investigate the synergistic effect of the cold atmospheric plasma (CAP) and heterogeneous photocatalytic processes in an aqueous solution to enhance water purification efficacy and reduce the energy cost required by CAP. 0.1% Ag/TiO2-reduced graphene oxide (rGO) nanoparticles (NPs) photo-composite were prepared and fully characterized. Data showed that Ag nanoparticles and the rGO play an important role in increasing the efficiency of the whole treatment process and the photo-composite (0.1% Ag/TiO2-1% rGO at 400 °C) revealed the highest phenol removal rate with excellent reusability. Also, complete inactivation (~ 5log10 reduction) of both E. coli and S. aureus by NPs was observed without CAP exposure, whereas a minimal effect (0.1-0.5 log10) on viruses (Adenovirus (AdV), rotavirus, and ɸX174) was observed after 10 min incubation. Interestingly, the photocatalytic virus inactivation test was promising, as it resulted in > 4.7log10 reduction of AdV at 2 min treatment, whereas < 1log10 could be reduced using only CAP at the same treatment time. Accordingly, we believe that this work could provide new insights into how the synergy between CAP and 0.1% Ag/TiO2-1% rGO photo-composite in aqueous media imposes a great potential for environmental applications, such as water purification and microbial inactivation.


Subject(s)
Metal Nanoparticles , Plasma Gases , Water Pollutants, Chemical , Water Pollutants , Catalysis , Escherichia coli , Graphite , Oxides/chemistry , Silver/chemistry , Staphylococcus aureus , Titanium , Water , Water Pollutants, Chemical/chemistry
8.
Toxics ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35622635

ABSTRACT

Heavy metals such as cadmium (Cd) pollute the environment. Heavy metal pollution endangers the Nile River since it serves as an irrigation and freshwater source for the cities and farms that line its banks. Water and sediment samples from the Nile River were tested for Cd content. In addition, a sequential experiment analytical method was performed to determine the metal's relative mobility. According to the data, there is an average of 0.16 mg kg-1 of Cd in sediments. The BeniSuef water treatment plant and brick factory, the iron and steel factory of Helwan, the oil and detergent factory of Sohag, and the discharge of the cement factory in Samalut had the greatest concentration of Cd in their vicinity. According to the risk assessment code, there are four categories of Cd: residual (57.91%), acid-soluble (27.11%), reducible (11.84%), and oxidizable (3.14%). Bioavailable and mobile Cd levels in sediment and water were found in Beni Suef, Aswan; Helwan; Samalut; Sohag; and Helwan. Because the other metal is highly bioavailable, its concentration is not a risk factor at the Samalut station. Cd's toxicity and bioaccumulation make it an extra hazard to aquatic animals and human life. There should be a deterministic approach to monitoring Cd near industrial sources.

9.
RSC Adv ; 12(17): 10401-10408, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35425001

ABSTRACT

A single-phase and crystalline NiS2 nanoflake layer was produced by a facile and novel approach consisting of a two-step growth process. First, a Ni(OH)2 layer was synthesized by a chemical bath deposition approach using a nickel precursor and ammonia as the starting solution. In a second step, the obtained Ni(OH)2 layer was transformed into a NiS2 layer by a sulfurization process at 450 °C for 1 h. The XRD analysis showed a single-phase NiS2 layer with no additional peaks related to any secondary phases. Raman and X-ray photoelectron spectroscopy further confirmed the formation of a single-phase NiS2 layer. SEM revealed that the NiS2 layer consisted of overlapping nanoflakes. The optical bandgap of the NiS2 layer was evaluated with the Kubelka-Munk function from the diffuse reflectance spectrum (DRS) and was estimated to be around 1.19 eV, making NiS2 suitable for the photodegradation of organic pollutants under solar light. The NiS2 nanoflake layer showed photocatalytic activity for the degradation of phenol under solar irradiation at natural pH 6. The NiS2 nanoflake layer exhibited good solar light photocatalytic activity in the photodegradation of phenol as a model organic pollutant.

10.
Sci Total Environ ; 766: 144333, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33412433

ABSTRACT

Discharge of Drinking Water Treatment Plants sludge directly on surface waters without any treatment is becoming an important issue in most countries around the world, behavior is not only affecting on the water quality, but also on soil and crops. This study investigated the effect of discharge of alum sludge and the variation in the level of the Nile water (flow regime) on water and soil qualities. The water samples were analyzed for physical, chemical and microbiological parameters. In winter (closure season), the mean values of EC, TDS, major ions, pH, DO and total algae count were higher than in summer. In summer (flooding season), it was noticed that the mean values of SiO2, metals, COD, BOD, TOC, nutrients and bacteriological parameters exceed winter season values. Moreover, the concentrations of Al, Fe, Mn were above WHO permissible limits and the concentrations of aggregate organic parameters exceed the FAO permissible limits in sites near the areas of sludge discharge. Most of water samples exceed the national guidelines. For soil, our findings showed that the concentrations of metals in soil samples collected from areas irrigated from canals receiving alum sludge are more (two-three times) than their concentrations from the pure sites. However, Pb concentration in the contaminated soil reaches ten times more than in the pure one. The management of sludge disposal becomes an urgent priority to save waterways, soil and crops from pollution. Finally, the variation in water flow during the winter closure period with reduction by ≈15 BCM is similar to the same reduction in the Nile flow when the Grand Ethiopian Renaissance Dam starts operation. This indicates that the long-term reduction in water flow due to the construction of this dam may cause serious environmental changes in the Nile River in Egypt.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Alum Compounds , Egypt , Environmental Monitoring , Metals, Heavy/analysis , Rivers , Sewage , Silicon Dioxide , Soil , Water Pollutants, Chemical/analysis
11.
Article in English | MEDLINE | ID: mdl-33317163

ABSTRACT

The Brahmaputra River is the largest tropical river in India that flows along the Himalayan regions and it is the lifeline of millions of people. Metal fractionation in the Brahmaputra River's surface sediments and its correlation with turbidity are assessed in this study. The interaction between metal fractions and the overlying water is studied using multivariate statistical analyses. The strong positive correlation between NH4 of the overlying water and the exchangeable fractions in sediments signifies that the metals in the exchangeable fractions can be substituted by NH4. Subsequently, these metals can be released into the overlying water. The fluctuation in turbidity from 73 to 875 NTU indicates a large variation in the suspended matter concentration, and a higher concentration of suspended matter could provide attachment sites for pollutants such as metals. Significant variation in turbidity manifests a potentially high risk of pollution. In addition, the observation of local people along the Brahmaputra River turning its color to muddy indicates the need for continuous monitoring of water quality and an assessment of pollution is crucial. Although the Brahmaputra River's risk assessment code is at low risk, the exchangeable fractions of Ni and Zn are present at all sites. Thus, the Brahmaputra River requires early preventive measures and management strategies to control metal pollution. This study contributes to an understanding of the fluctuation of turbidity of a tropical river. We provide baseline data for policymakers, and the importance of further intensive studies on metal pollution in the Himalayan Rivers is highlighted.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Rivers , Geologic Sediments/analysis , India , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
12.
J Nanosci Nanotechnol ; 15(9): 6524-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716208

ABSTRACT

This article discusses the hydrothermal synthesis of well-dispersed faceted α-GaOOH in the presence of sodium acetate by the self-assembly method. The synthesized α-GaOOH possesses a mixture of hexagonal and rectangular plates, cubic and diamond-like morphologies. The presence of ethanol as a co-solvent with water (1:1) facilitates scroll-like cylindrical morphology. The influences of sodium acetate concentration, hydrothermal temperatures, time and solvent on the formation of the above-mentioned morphologies were investigated. The synthesized α-GaOOH was characterized using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and High-Resolution Transmission Electron Microscopy (HR-TEM), thermal analysis and nitrogen adsorption analysis. The XRD pattern confirmed the formation of orthorhombic α-GaOOH. The increase of the sodium acetate concentration from 0.031 mol/L to 0.250 mol/L facilitates the formation of more cubic and diamond-shaped particles than plate-like particles. The formation of faceted α-GaOOH is slow at 150 degrees C, and a further increase in hydrothermal temperature from 175 degrees C to 225 degrees C had no appreciable effect. Similarly, an increase in hydrothermal time from 5 h to 20 h at 200 degrees C facilitates hexagonal to cubic shaped plates. The solution pH strongly influenced the aspect ratio of the nanoplates. Hydrothermal temperature and time had no appreciable effect from 175 degrees C to 225 degrees C. The removal perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) using the synthesized α-GaOOH was studied. A plausible mechanism for the formation of nanoplates is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...