Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 175: 108304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663352

ABSTRACT

BACKGROUND: Brain tumours are known to have a high mortality and morbidity rate due to their localised and frequent invasive growth. The concept that glioma resistance could originate from the dissimilarity in the vulnerability of clonogenic glial stem cells to chemotherapeutic drugs and radiation has driven the scientific community to reexamine the comprehension of glioma growth and strategies that target these cells or modify their stemness. METHODS: Based on the enrichment scores of 12 stemness signatures, we identified glioma subtypes in both tumour bulks and single cells by clustering analysis. Furthermore, we comprehensively compared molecular and clinical features among the glioma subtypes. RESULTS: Consistently, in seven different datasets, hierarchical clustering uncovered three subtypes of glioma, termed Stem-H, Stem-M, and Stem-L, with high, medium, and low stemness signatures, respectively. Stem-H and Stem-L exhibited the most unfavorable and favourable overall and disease-free survival, respectively. Stem-H showed the highest enrichment scores of the EMT, invasion, proliferation, differentiation, and metastasis processes signatures, while Stem-L displayed the lowest. Stem-H harboured a greater proportion of late-stage tumours compared to Stem-L. Moreover, Stem-H manifested higher tumour mutation burden, DNA damage repair and cell cycle activity, intratumour heterogeneity, and a more frequent incidence of TP53 and EGFR mutations than Stem-L. In contrast, Stem-L had higher O6-Methylguanine-DNA Methyltransferase (MGMT) methylation levels. CONCLUSION: The classification of glioma based on stemness may offer new insights into the biology of the tumour, as well as more accurate clinical management of the disease.


Subject(s)
Brain Neoplasms , Glioma , Neoplastic Stem Cells , Transcriptome , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Transcriptome/genetics , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Single-Cell Analysis/methods
2.
Pathobiology ; 89(6): 370-381, 2022.
Article in English | MEDLINE | ID: mdl-35785767

ABSTRACT

BACKGROUND: As the highest prevalent pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) ranks the 7th lethal malignancy worldwide. The late diagnosis, chemotherapeutic resistance, and high associated mortality make PDAC a dilemma facing the oncologists. Protein kinase C (PKC) enzymes have been shown to be important in different cancer progression. METHODS: To understand the pattern of PKC enzymes in PDAC, we examined all PKC family member genes expression in PDAC and matched normal tissues. The critical role of PKCι was further investigated in different PDAC cells using cellular and molecular technology. RESULTS: We found that PRKCI (PKCι) was the most significantly overexpressed PKCs in pancreatic cancer. However, little is known about its role and regulation of oncogenic signaling pathways in pancreatic cancer. In this study, we confirmed the overexpression of PKCι in PDAC, and this high expression was associated with poor prognosis of patients. We proved that knockdown of PKCι by small interfering RNA or shRNA significantly inhibited pancreatic cancer cell growth and migration or invasion. Conversely, PKCι overexpression promoted pancreatic cancer cell growth and migration. Moreover, bioinformatical and technical studies informed the participation of PKCι in regression of apoptosis in PDAC cells, which may be related to the regulation of both PI3K/AKT and Wnt/ß-catenin pathways. CONCLUSIONS: Therefore, our results are adding more insight into the importance of PKCι in pancreatic cancer. PKCι induces pancreatic cancer progression through activation of PI3K/AKT and Wnt/ß-catenin signaling pathways, which may provide a promising therapeutic target for pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , beta Catenin/metabolism , Biomarkers , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling Pathway , Pancreatic Neoplasms
3.
Acta Pharmacol Sin ; 43(3): 735-746, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34183755

ABSTRACT

As a member of the potassium calcium-activated channel subfamily, increasing evidence suggests that KCNN4 was associated with malignancies. However, the roles and regulatory mechanisms of KCNN4 in PDAC have been little explored. In this work, we demonstrated that the level of KCNN4 in PDAC was abnormally elevated, and the overexpression of KCNN4 was induced by transcription factor AP-1. KCNN4 was closely correlated with unfavorable clinicopathologic characteristics and poor survival. Functionally, we found that overexpression of KCNN4 promoted PDAC cell proliferation, migration and invasion. Conversely, the knockdown of KCNN4 attenuated the growth and motility of PDAC cells. In addition to these, knockdown of KCNN4 promoted PDAC cell apoptosis and led to cell cycle arrest in the S phase. In mechanistic investigations, RNA-sequence revealed that the MET-mediated AKT axis was essential for KCNN4, encouraging PDAC cell proliferation and migration. Collectively, these findings reveal a function of KCNN4 in PDAC and suggest it's an attractive therapeutic target and tumor marker. Our studies underscore a better understanding of the biological mechanism of KCNN4 in PDAC and suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/metabolism , Animals , Apoptosis/physiology , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Gene Knockdown Techniques , Humans , Mice , Transcription Factor AP-1/metabolism , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
Life (Basel) ; 11(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34575029

ABSTRACT

Doxorubicin (DOX; Adricin) is an anthracycline antibiotic, which is an efficient anticancer chemotherapeutic agent that targets many types of adult and pediatric tumors, such as breast cancer, leukemia, and lymphomas. However, use of DOX is limited due to its cardiotoxic effects. This study sequentially investigated the mechanistic pathways of the cardiotoxic process of DOX in rats at different post-treatment periods using cumulative dose, which is used in therapeutic regimes. In this regard, 56 male albino rats were used for the experiment. The experimental animals were divided into seven groups (n = 8/group) based on dose and sacrifice schedule as follows: G1 (2 mg/kg body weight [BW] and sacrificed at day 4), G2 (4 mg/kg BW and sacrificed at day 8), G3 (6 mg/kg BW and sacrificed at day 15), G4 (8 mg/kg BW and sacrificed at day 30), G5 (10 mg/kg BW and sacrificed at day 60), G6 (10 mg/kg BW and sacrificed at day 90), and G7 (10 mg/kg BW and sacrificed at day 120). As expected, G1, G2, and G3-treated groups revealed features of acute toxic myocarditis associated with degenerative and necrotic changes in myocytes, mitochondrial damage, elevation of cardiac biomarkers, and depletion of cellular antioxidant enzymes. However, these changes increased in severity with subsequent treatment with the same dose until reaching a cumulative dose of 10 mg/kg BW for 30 d. Furthermore, after a cumulative dose of 10 mg/kg BW with a withdrawal period of 2-3 months, various predominant changes in chronicity were reported, such as disorganization and atrophy of myocytes, condensation and atrophy of mitochondria, degranulation of mast cells, and fibrosis with occasional focal necrosis, indicating incomplete elimination of DOX and/or its metabolites. Altogether, these data provide interesting observations associated with the cardiotoxic process of DOX in rats that would help understand the accompanying changes underlying the major toxic effects of the drug. Future research is suggested to explore more about the dose-dependent mechanisms of such induced toxicity of DOX that would help determine the proper doses and understand the resulting cardiomyopathy.

5.
Theranostics ; 11(5): 2108-2122, 2021.
Article in English | MEDLINE | ID: mdl-33500714

ABSTRACT

Rationale: Protein kinases are critical therapeutic targets for curing hepatocellular carcinoma (HCC). As a serine/threonine kinase, the potential roles of serine/threonine kinase 39 (STK39) in HCC remain to be explored. Methods: The expression of STK39 was examined by RT-qPCR, western blotting and immunohistochemistry. Cell proliferation and apoptosis were detected by CCK8 and TUNEL kit. Cell migration and invasion assays were performed using a transwell system with or without Matrigel. RNA-seq, mass spectrometry and luciferase reporter assays were used to identify STK39 binding proteins. Results: Here, we firstly report that STK39 was highly overexpressed in clinical HCC tissues compared with adjacent tissues, high expression of STK39 was induced by transcription factor SP1 and correlated with poor patient survival. Gain and loss of function assays revealed that overexpression of STK39 promoted HCC cell proliferation, migration and invasion. In contrast, the depletion of STK39 attenuated the growth and metastasis of HCC cells. Moreover, knockdown of STK39 induced the HCC cell cycle arrested in the G2/M phase and promoted apoptosis. In mechanistic studies, RNA-seq revealed that STK39 positively regulated the ERK signaling pathway. Mass spectrometry identified that STK39 bound to PLK1 and STK39 promoted HCC progression and activated ERK signaling pathway dependent on PLK1. Conclusions: Thus, our study uncovers a novel role of STK39/PLK1/ERK signaling axis in the progress of HCC and suggests STK39 as an indicator for prognosis and a potential drug target of HCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Cycle Proteins/genetics , Cell Proliferation , Extracellular Signal-Regulated MAP Kinases/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
6.
Cell Biol Toxicol ; 37(4): 555-571, 2021 08.
Article in English | MEDLINE | ID: mdl-33389337

ABSTRACT

The S100 protein family genes play a crucial role in multiple stages of tumorigenesis and progression. Most of S100 genes are located at chromosome locus 1q21, which is a region frequently rearranged in cancers. Here, we examined the expression of the S100 family genes in paired pancreatic ductal adenocarcinoma (PDAC) samples and further validated the expression of S100A16 by immunohistochemistry staining. We found that S100A16 is significantly upregulated in clinical PDAC samples. However, its roles in PDAC are still unclear. We next demonstrated that S100A16 promotes PDAC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Knockdown of S100A16 induces PDAC cell cycle arrest in the G2/M phase and apoptosis. Furthermore, we also demonstrated that S100A16 promotes PDAC cell proliferation, migration, and invasion via AKT and ERK1/2 signaling in a fibroblast growth factor 19 (FGF19)-dependent manner. Taken together, our results reveal that S100A16 is overexpressed in PDAC and promotes PDAC progression through FGF19-mediated AKT and ERK1/2 signaling, suggesting that S100A16 may be a promising therapeutic target for PDAC. S100A16 was upregulated in PDAC and associated with prognosis of PDAC patients. S100A16 regulates apoptosis and the cell cycle of pancreatic cancer cells. S100A16 promotes the progression of pancreatic cancer by AKT-ERK1/2 signaling. S100A16 may be a promising therapeutic target for PDAC.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Fibroblast Growth Factors , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Signaling System , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , S100 Proteins/genetics , S100 Proteins/metabolism
7.
Front Cell Dev Biol ; 9: 798319, 2021.
Article in English | MEDLINE | ID: mdl-35174160

ABSTRACT

The protein kinase C (PKC) family has been described with its role in some cancers, either as a promoter or suppressor. PKC signaling also regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor alpha (PPARalpha). However, the role of different PKC enzymes in tumor immunity remains poorly defined. This study aims to investigate the correlation between PKC genes and tumor immunity, in addition to studying the probability of their use as predictive biomarkers for tumor immunity and immunotherapeutic response. The ssGSEA and the ESTIMATE methods were used to assess 28 tumor-infiltrating lymphocytes (TILs) and the immune component of each cancer, then correlated with PKC levels. Prediction of PKC levels-dependent immunotherapeutic response was based on human leukocytic antigen (HLA) gene enrichment scores and programmed cell death 1 ligand (PD-L1) expression. Univariate and multivariate Cox analysis was performed to evaluate the prognostic role of PKC genes in cancers. Methylation level and CNAs could drive the expression levels of some PKC members, especially PRKCI, whose CNGs are predicted to elevate their level in many cancer types. The most crucial finding in this study was that PKC isoenzymes are robust biomarkers for the tumor immune status, PRKCB, PRKCH, and PRKCQ as stimulators, while PRKCI and PRKCZ as inhibitors in most cancers. Also, PKC family gene levels can be used as predictors for the response to immunotherapies, especially HLAs dependent and PD-L1 blockade-dependent ones. In addition to its prognostic function, all PKC family enzymes are promising tumor immunity biomarkers and can help select suitable immune therapy in different cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...