Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Arch Pharm (Weinheim) ; 357(9): e2300562, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219313

ABSTRACT

A novel group of indolyl-1,2,4-triazole-chalcone hybrids was designed, synthesized, and assessed for their anticancer activity. The synthesized compounds exhibited significant antiproliferative activity. Compounds 9a and 9e exhibited significant cancer inhibition with GI50 ranging from 3.69 to 20.40 µM and from 0.29 to >100 µM, respectively. Both compounds displayed a broad spectrum of anticancer activity with selectivity ratios ranging between 0.50-2.78 and 0.25-2.81 at the GI50 level, respectively. The synthesized compounds were also screened for their cytotoxicity by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazol (MTT) assay and for inhibition of epidermal growth factor receptor (EGFR) and c-MET (mesenchymal-epithelial transition factor). Some of the tested compounds exhibited significant inhibition against EGFR and/or c-MET. Compound 9b showed the highest c-MET inhibition (IC50 = 4.70 nM) compared to foretinib (IC50 = 2.5 nM). Compound 9d showed equipotent activity compared with erlotinib against EGFR (IC50 = 0.052 µM) and displayed significant c-MET inhibition with an IC50 value of 4.90 nM.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Indoles , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-met , Triazoles , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Molecular Structure , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
2.
Mol Divers ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031290

ABSTRACT

Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.

3.
BMC Chem ; 17(1): 116, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37716963

ABSTRACT

INTRODUCTION: One of the most robust global challenges and difficulties in the 21st century is cancer. Treating cancer is a goal which continues to motivate researchers to innovate in design and development of new treatments to help battle the disease. OBJECTIVES: Our objective was developing new antiapoptotic hybrids based on biologically active heterocyclic motifs "benzimidazole?oxadiazole-chalcone hybrids'' that had shown promising ability to inhibit EGFR and induce apoptosis. We expected these scaffolds to display anticancer activity via inhibition of BRAF, EGFR, and Bcl-2 and induction of apoptosis through activation of caspases. METHODS: The new hybrids 7a-x were evaluated for their anti-proliferative, EGFR & BRAFV600E inhibitory, and apoptosis induction activities were detected. Docking study & dynamic stimulation into EGFR and BRAFV600E were studied. RESULTS: All hybrids exhibited remarkable cell growth inhibition on the four tested cell lines with IC50 ranging from 0.95 µM to 12.50 µM. which was comparable to Doxorubicin. Compounds 7k-m had the most potent EGFR inhibitory activity. While, compounds 7e, 7g, 7k and 7l showed good inhibitory activities against BRAFV600E. Furthermore, Compounds 7k, 7l, and 7m increased Caspases 3,8 & 9, Cytochrome C and Bax levels and decreased Bcl-2 protein levels. Compounds 7k-m received the best binding scores and showed binding modes that were almost identical to each other and comparable with that of the co-crystalized Erlotinib in EGFR and BRAF active sites. CONCLUSION: Compounds 7k-m could be used as potential apoptotic anti-proliferative agents upon further optimization.

4.
J Org Chem ; 88(4): 2095-2102, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36749643

ABSTRACT

1,2,4-Triazinones are useful compounds, but their synthesis can be challenging. Herein, we report a strategy to build 1,2,4-triazinones using α-bromohydrazones to access diazadienes and exploiting their ability to undergo facile substitution with nitrogen nucleophiles. The N-isocyanate intermediate formed in situ can then undergo cyclization to give the desired triazinones. This provides access to products with various substituents at the 4-position, and with suitable hydrazone precursors (R2 = Ph), the cascade reaction yields 1,2,4-triazin-3(2H)-ones at room temperature.

5.
Arch Pharm (Weinheim) ; 356(2): e2200357, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36351754

ABSTRACT

A series of new 1,3,4-oxadiazole-chalcone/benzimidazole hybrids 9a-o and 10a-k were designed and synthesized as potential antiproliferative agents. Hybrids 9a-o exhibited remarkable antiproliferative activities on different NCI-60 cell lines in a single-dose assay. The antiproliferative activities of the newly synthesized compounds were evaluated against a panel of four human cancer cell lines (A-549, MCF-7, Panc-1, and HT-29). Compounds 9g-i and their oxygen isosteres, 10f-h, exhibited promising antiproliferative activities with IC50 values ranging from 0.80 to 2.27 µM compared to doxorubicin (IC50 ranging from 0.90 to 1.41 µM). Furthermore, the inhibitory potency of these compounds against the epidermal growth factor receptor (EGFR) and BRAFV600E kinases was evaluated using erlotinib as a reference drug. Molecular modeling studies were done to investigate the binding mode of the most active hybrids in the ATP binding site of EGFR.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Chalcone/chemistry , Structure-Activity Relationship , Chalcones/pharmacology , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Benzimidazoles/pharmacology , Drug Screening Assays, Antitumor , Molecular Structure , Molecular Docking Simulation , Dose-Response Relationship, Drug
6.
Pharmacol Rep ; 74(4): 570-582, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35594012

ABSTRACT

The indole moiety is one of the most widespread heterocycles found in both natural products and biological systems. Indoles have important biological activities including anticancer, antioxidant, anti-inflammatory, antifungal, anticholinesterase, and antibacterial properties. Scientists are therefore interested in the synthesis of biologically active indole-based hybrids such as indole-coumarin, indole-chalcone, indole-isatin, indole-pyrimidine and so on, with the aim of improving activity, selectivity, and mitigating side effects. This review will discuss the newly synthesized indole-based hybrids along with their biological activity which will be useful in drug discovery and development.


Subject(s)
Antineoplastic Agents , Biological Products , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Molecular Structure , Structure-Activity Relationship
7.
Bioorg Chem ; 120: 105631, 2022 03.
Article in English | MEDLINE | ID: mdl-35091289

ABSTRACT

Angiogenesis is essential in the growth of solid tumors which need oxygen and nutrients supply to grow in size. The VEGF/VEGFR-2 signaling pathway plays an important role in tumor angiogenesis. Sorafenib is an FDA approved cancer therapeutic with activity against many protein kinases, including VEGFR. We designed 4-piperazinylquinolin-2(1H)-ones with variable aromatic moieties and Mannich bases as Sorafenib analogues as potential inhibitors of angiogenesis. In this study, we investigated the impact of replacing the linker aromatic ring with cyclic tertiary amines and the effect of incorporation of variably substituted distal rings. We hypothesized that cyclic tertiary amines would improve pharmacokinetic properties and contribute to enzyme interactions. Two series of piperazinylquinolinone-based compounds were synthesized, characterized, and evaluated for bioactivity against adenocarcinoma EKVX NSCLC and T-47D breast cancer cells. Ability to inhibit VEGFR-2 and apoptosis were investigated and molecular docking into the enzyme active site and theoretical ADME properties were determined. Notably, amongst series I three compounds exhibited higher anticancer activity than Staurosporine against EKVX NSCLC adenocarcinoma cell line. In series II, nine compounds exhibited higher antiproliferative activity than Staurosporine against T-47D breast cancer cell line. Two compounds; 5d and 7z exhibited lower toxicity against normal cell line (MCF 10A) than Staurosporine. Compound 7z was the most potent agent with IC50 38.76 nM. Moreover, 7z showed VEGFR-2 inhibitory activity higher than sorafenib and induced remarkable levels of both early and late apoptosis (2.82% and 21.30%, respectively). Hence, 5d and 7z are considered promising VEGFR-2 inhibitors with high efficacy against adenocarcinoma EKVX and T-47D breast cancer cells. The target compounds also possessed favorable physicochemical properties and pharmacokinetic parameters These studies further suggested that the 4-piperazinylquinolin-2(1H)-one derivatives developed in this study play a critical role in modulating VEGFR, and guide the design of innovative anticancer therapies.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Breast Neoplasms , Amines/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors , Sorafenib/pharmacology , Staurosporine/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2
8.
J Infect Dev Ctries ; 16(12): 1860-1869, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36753654

ABSTRACT

INTRODUCTION: Multi-Drug Resistance (MDR) is common in hospitalized geriatric patients. The study aims to investigate the pattern of antibiotic use and determine its association with MDR in hospitalized geriatric patients. METHODOLOGY: A retrospective cohort study including 193 geriatric patients admitted to a Geriatric Intensive Care Unit (GICU) in a tertiary care Geriatrics hospital in Egypt, throughout a consecutive 6 months duration. A review of medical records was done to extract clinical, socio-demographic, and prescribing data on antibiotics throughout admission. The presence of MDR organisms (MDROs) was determined by reviewing culture and sensitivity reports. Descriptive statistics and logistic regression analysis were performed. RESULTS: 181 (93.8%) patients received at least 1 antibiotic. Cephalosporins were the most commonly consumed antibiotics (24%). MDROs were significantly associated with receiving ≥ 3 antibiotics. Longer hospital stay was a predictor of multiple antibiotics use (Odds Ratio of 1.075). MDROs were prevalent in 110 (57.0 %) patients. Klebsiella species were the most frequent MDROs (26%) with the highest susceptibility to amikacin. CONCLUSIONS: The study provides a detailed description of both antibiotics use and MDR among hospitalized geriatric patients in Egypt. It gives a novel insight into the ongoing drug-pathogen combinations in acute healthcare settings of the aged. This data has a potential role in applying antimicrobial stewardship programs for hospitalized geriatric patients to mitigate antimicrobial resistance in similar settings.


Subject(s)
Anti-Bacterial Agents , Geriatrics , Humans , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Egypt , Tertiary Healthcare , Drug Resistance, Multiple, Bacterial , Hospitals , Tertiary Care Centers
9.
Future Med Chem ; 13(18): 1559-1590, 2021 09.
Article in English | MEDLINE | ID: mdl-34340532

ABSTRACT

FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.


Subject(s)
Antineoplastic Agents/chemistry , Biomarkers, Tumor/antagonists & inhibitors , Focal Adhesion Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Amino Acid Sequence , Antineoplastic Agents/pharmacology , Binding Sites , Drug Design , Heterocyclic Compounds/chemistry , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Structure-Activity Relationship
10.
Eur J Med Chem ; 222: 113569, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34111829

ABSTRACT

Novel 5-pyridinyl-1,2,4-triazoles were designed as dual inhibitors of histone deacetylase 2 (HDAC2) and focal adhesion kinase (FAK). Compounds 5d, 6a, 7c, and 11c were determined as potential inhibitors of both HDAC2 (IC50 = 0.09-1.40 µM) and FAK (IC50 = 12.59-36.11 nM); 6a revealed the highest activity with IC50 values of 0.09 µM and 12.59 nM for HDAC2 and FAK, respectively. Compound 6a was superior to reference drugs vorinostat and valproic acid in its ability to inhibit growth/proliferation of A-498 and Caki-1 renal cancer cells. Further investigation proved that 6a strongly arrests the cell cycle at the G2/M phase and triggers apoptosis in both A-498 and Caki-1 cells. Moreover, the enhanced Akt activity that is observed upon chronic application of HDAC inhibitors was effectively suppressed by the dual HDAC2/FAK inhibitor. Finally, the high potency and selectivity of 6a towards HDAC2 and FAK proteins were rationalized by molecular docking. Taken together, these findings highlight the potential of 6a as a promising dual-acting HDAC2/FAK inhibitor that could benefit from further optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Focal Adhesion Kinase 1/metabolism , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Triazoles/chemistry , Tumor Cells, Cultured
11.
Bioorg Med Chem ; 40: 116168, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33962153

ABSTRACT

A new series of 2-(4-(2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide derivatives were synthesized and evaluated for anticancer activity. All target compounds showed anticancer activity higher than that of their 2-oxo-4-piperazinyl-1,2-dihydroquinolin-2(1H)-one precursors. Multidose testing of target compounds was performed against breast cancer T-47D cell line. Five compounds showed higher cytotoxic activity than Staurosporine. The dihalogenated derivative showed the best cytotoxic activity with IC50 2.73 ± 0.16 µM. In addition, the VEGFR-2 inhibitory activity of all synthetic compounds was evaluated. Two compounds of 6-fluoro-4-(piperazin-1-yl)quinolin-2(1H)-ones showed inhibitory activity comparable to sorafenib with IC50 46.83 ± 2.4, 51.09 ± 2.6 and 51.41 ± 2.3 nM, respectively. The cell cycle analysis of two compounds namely, 2-(4-(6-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)piperazin-1-yl)-N-(4-phenylthiazol-2-yl)acetamide and N-(4-(4-chlorophenyl)thiazol-2-yl)-2-(4-(2-oxo-1-phenyl-1,2-dihydroquinolin-4-yl)piperazin-1-yl)acetamide revealed that the arrest of cell cycle occurred at S phase. In apoptosis assay, the same two compounds were able to induce significant levels of early and late apoptosis. In a similar manner to Sorafenib, docking of target compounds with VEGFR-2 protein 4ASD showed HB with Cys919 in hinge region of enzyme and HB with both Glu885 and Asp1046 in gate area. Using SwissADME, all target compounds were predicted to be highly absorbed from gastrointestinal tract with no BBB permeability. It is clear that the two compounds are promising antiproliferative candidates that require further optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiazoles/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
12.
Bioorg Med Chem Lett ; 40: 127965, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33744442

ABSTRACT

Small molecule inhibitors of the focal adhesion kinase are regarded as promising tools in our armamentarium for treating cancer. Here, we identified four 1,2,4-triazole derivatives that inhibit FAK kinase significantly and evaluated their therapeutic potential. Most tested compounds revealed potent antiproliferative activity in HepG2 and Hep3B liver cancer cells, in which 3c and 3d were the most potent (IC50 range; 2.88 ~ 4.83 µM). Compound 3d possessed significant FAK inhibitory activity with IC50 value of 18.10 nM better than the reference GSK-2256098 (IC50 = 22.14 nM). The preliminary mechanism investigation by Western blot analysis showed that both 3c and 3d repressed FAK phosphorylation comparable to GSK-2256098 in HepG2 cells. As a result of FAK inhibition, 3c and 3d inhibited the pro-survival pathways by decreasing the phosphorylation levels of PI3K, Akt, JNK, and STAT3 proteins. This effect led to apoptosis induction and cell cycle arrest. Taken together, these results indicate that 3d could serve as a potent preclinical candidate for the treatment of cancers.


Subject(s)
Acetanilides/pharmacology , Aminobenzoates/pharmacology , Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/metabolism , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Acetanilides/chemical synthesis , Aminobenzoates/chemical synthesis , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Focal Adhesion Kinase 1/chemistry , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , S Phase Cell Cycle Checkpoints/drug effects , Triazoles/chemical synthesis
13.
Bioorg Chem ; 106: 104510, 2021 01.
Article in English | MEDLINE | ID: mdl-33279248

ABSTRACT

New quinoline / chalcone hybrids containing 1,2,4-triazole moiety have been designed, synthesized and their structures elucidated and confirmed by various spectroscopic techniques. The designed compounds showed moderate to good activity on different NCI 60 cell lines in a single-dose assay with a growth inhibition rate ranging from 50% to 94%. Compounds 7b, 7d, 9b, and 9d were the most active compounds in most cancer cell lines with a growth inhibition percent between 77% and 94%. Newly synthesized hybrids were evaluated for their anti-proliferative activity against a panel of four human cancer cell lines. Compounds 7a, 7b, 9a, 9b, and 9d showed promising antiproliferative activities. These compounds were further tested for their inhibitory potency against EGFR and BRAFV600E kinases with erlotinib as a reference drug. The molecular docking study of compounds 7a, 7b, 9a, 9b, and 9d revealed nice fitting into the active site of EGFR and BRAFV600E kinases. Compounds 7b, 9b, and 9d displayed the highest binding affinities and similar binding pattern to those of erlotinib.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcone/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quinolines/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Quinolines/chemistry , Structure-Activity Relationship , Triazoles/chemistry
14.
Pharmacol Rep ; 72(5): 1101-1124, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32880101

ABSTRACT

STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.


Subject(s)
Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Proliferation/physiology , Humans , Neovascularization, Pathologic/metabolism
15.
Bioorg Chem ; 99: 103767, 2020 06.
Article in English | MEDLINE | ID: mdl-32325332

ABSTRACT

Bis-hydrazides 13a-h were designed and synthesized as potential tubulin inhibitors selectively targeting the colchicine site between α- and ß-tubulin subunits. The newly designed ring-B substituents were assisted at their ends by 'anchor groups' which are expected to exert binding interaction(s) with new additional amino acid residues in the colchicine site (beyond those amino acids previously reported to interact with reference inhibitors as CA-4 and colchicine). Conformational flexibility of bis-hydrazide linker assisted these 'extra-binding' properties through reliving ligands' strains in the final ligand-receptor complexes. Compound 13f displayed the most promising computational and biological study results in the series: MM/GBSA binding energy of -62.362 kcal/mol (extra-binding to Arg α:221, Thr ß:353 & Lys ß:254); 34% NCI-H522 cells' death (at 10 µM), IC50 = 0.073 µM (MTT assay); significant cell cycle arrest at G2/M phase; 11.6% preG1 apoptosis induction and 83.1% in vitro tubulin inhibition (at concentration = IC50). Future researchers in bis-hydrazide tubulin inhibitors are advised to consider the 2-chloro-N-(4-substituted-phenyl)acetamide derivatives as compound 13f due to extra-binding properties of their ring B.


Subject(s)
Antineoplastic Agents/pharmacology , Colchicine/pharmacology , Drug Discovery , Hydrazines/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Colchicine/chemical synthesis , Colchicine/chemistry , Computer-Aided Design , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Structure , Structure-Activity Relationship , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tumor Cells, Cultured
16.
Eur J Med Chem ; 186: 111885, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31784187

ABSTRACT

Constitutive activation of STAT3 can play a vital role in the development of melanoma. STAT3-targeted therapeutics are reported to show efficacy in melanomas harboring the BRAFV600E mutant and also in vemurafenib-resistant melanomas. We designed and synthesized a series of substituted nitric oxide (NO)-releasing quinolone-1,2,4-triazole/oxime hybrids, hypothesizing that the introduction of a STAT3 binding scaffold would augment their cytotoxicity. All the hybrids tested showed a comparable level of in vitro NO production. 7b and 7c exhibited direct binding to the STAT3-SH domain with IC50 of ∼ 0.5 µM. Also, they abrogated STAT3 tyrosine phosphorylation in several cancer cell lines, including the A375 melanoma cell line that carries the BRAFV600E mutation. At the same time, they did not affect the phosphorylation of upstream kinases or other STAT isoforms. 7c inhibited STAT3 nuclear translocation in mouse embryonic fibroblast while 7b and 7c inhibited STAT3 DNA-binding activity in the A375 cell line. Their anti-proliferating activity is attributed to their ability to trigger the production of reactive oxygen species and induce G1 cell cycle arrest in the A375 cell line. Interestingly, 7b and 7c showed robust cell growth suppression and apoptosis induction in two pairs of BRAF inhibitor-naïve (-S) and resistant (-R) melanoma cell lines containing a BRAF V600E mutation. Surprisingly, MEL1617-R cells that are known to be more resistance to MEK inhibition by GSK1120212 than MEL1617-S cells exhibit a similar response to 7b and 7c.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Nitric Oxide/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Melanoma/metabolism , Molecular Docking Simulation , Molecular Structure , Nitric Oxide/analysis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , STAT3 Transcription Factor/metabolism , Structure-Activity Relationship
17.
Bioorg Chem ; 84: 150-163, 2019 03.
Article in English | MEDLINE | ID: mdl-30502626

ABSTRACT

A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 µM), Src (IC50 = 0.96 µM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcone/pharmacology , Interleukin-6/antagonists & inhibitors , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/chemistry , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Interleukin-6/metabolism , Molecular Structure , Oxadiazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , STAT3 Transcription Factor/metabolism , Structure-Activity Relationship
18.
Eur J Med Chem ; 151: 705-722, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29660690

ABSTRACT

A series of novel 1, 2, 4-triazole/chalcone hybrids was prepared and identified with different spectroscopic techniques. The prepared compounds showed remarkable cytotoxic activity against different cancer cell lines. Compounds 24, 25, 27, 41 and 47 had shown the highest cytotoxicity among the tested compounds against human lung adenocarcinoma A549 cells with IC50 ranging from 4.4 to 16.04 µM compared to cisplatin with IC50 of 15.3 µM. Flow cytometric analysis of the tested compounds showed an increase in the number of apoptotic cells in a dose-dependent manner. The further mechanistic study demonstrated that 1, 2, 4-triazole-chalcone hybrids induced apoptosis via increased level of proapoptotic protein Bax, release of cytochrome c from mitochondria and activation of caspase-3/8/9 proteins. However, general caspase inhibition by the pan-caspase inhibitor, z-VAD-fmk, significantly decreased the apoptosis induced by the tested hybrids, suggesting dependency of apoptosis on activation of the caspase-3 pathway.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Lung Neoplasms/drug therapy , Triazoles/chemistry , Triazoles/pharmacology , A549 Cells , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Apoptosis/drug effects , Caspase 3/metabolism , Enzyme Activation/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology
19.
Bioorg Chem ; 75: 242-259, 2017 12.
Article in English | MEDLINE | ID: mdl-29032325

ABSTRACT

A series of novel quinolines incorporating 1,2,4-triazole/oxime hybrids were prepared. They showed remarkable anti-inflammatory activity and exhibited very low incidence of gastric ulceration, compared to indomethacin. Most of the compounds tested showed remarkable inhibition of the COX-1 isozyme, with IC50's ranging from 0.48 to 28µM. Compounds 7c and 9g showed high safety profiles with normal stomach tissue integrity. Docking studies supported the observed in vitro inhibitory activity towards the COX enzymes that may explain their promising anti-inflammatory activity relative to indomethacin. Moreover, differences between the COX-1 and COX-2 isozymes in observed energy scores, as well as in the number of interactions with some of the compounds tested, might predict their higher selectivity towards COX-1 rather than COX-2. Compound 9e was found to inhibit both COXs non-competitively with Ki values of 81µM and 94.6µM.


Subject(s)
Oximes/chemistry , Oximes/pharmacology , Quinolines/chemistry , Triazoles/chemistry , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Binding Sites , Catalytic Domain , Cyclooxygenase 1/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Edema/chemically induced , Edema/drug therapy , Enzyme Activation/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Inhibitory Concentration 50 , Kinetics , Liver/drug effects , Liver/pathology , Molecular Docking Simulation , Nitric Oxide/metabolism , Rats , Structure-Activity Relationship , Triazoles/pharmacology
20.
Eur J Med Chem ; 141: 293-305, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29031074

ABSTRACT

Combretastatin A4 (CA4) is a natural product characterized by a powerful inhibition of tubulin polymerization and a potential anticancer activity. However, therapeutic application of CA4 is substantially hindered due to geometric isomerization. In the current study, new cis-restricted Combretastatin A4 analogues containing 1,2,4-triazle in place of the olefinic bond were designed and synthesized. The synthesized compounds were evaluated for their in vitro antiproliferative activity in human hepatocellular carcinoma HepG2 and leukemia HL-60 cell lines using MTT assay. Moreover, fourteen compounds were selected and tested for their antiproliferative activity by the National Cancer Institute. Some of the tested compounds showed moderate activity against sixty cell lines. In vitro tubulin polymerization inhibitory activity was evaluated on HepG2 cells. The assay revealed that 6a showed a remarkable tubulin inhibition compared to CA4. Moreover, the cell cycle analysis revealed significant G2/M cell cycle arrest of the analogue 6c in HepG2 cells. Molecular docking combined with AMBER-based molecular mechanical minimization results showed several noncovalent interactions, including van der Waals and hydrogen-bonding with several amino acids within the colchicine binding site of ß-subunit of tubulin.


Subject(s)
Antineoplastic Agents/pharmacology , Bibenzyls/pharmacology , Triazoles/pharmacology , Tubulin Modulators/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bibenzyls/chemical synthesis , Bibenzyls/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL