Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1325272, 2024.
Article in English | MEDLINE | ID: mdl-38303989

ABSTRACT

Oral cancer is a severe health problem that accounts for an alarmingly high number of fatalities worldwide. Withania somnifera (L.) Dunal has been extensively studied against various tumor cell lines from different body organs, rarely from the oral cavity. We thus investigated the cytotoxicity of W. somnifera fruits (W-F) and roots (W-R) hydromethanolic extracts and their chromatographic fractions against oral squamous cell carcinoma (OSCC) cell lines [Ca9-22 (derived from gingiva), HSC-2, HSC-3, and HSC-4 (derived from tongue)] and three normal oral mesenchymal cells [human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF), and human pulp cells (HPC)] in comparison to standard drugs. The root polar ethyl acetate (W-R EtOAc) and butanol (W-R BuOH) fractions exhibited the strongest cytotoxicity against the Ca9-22 cell line (CC50 = 51.8 and 40.1 µg/mL, respectively), which is relatively the same effect as 5-FU at CC50 = 69.4 µM and melphalan at CC50 = 36.3 µM on the same cancer cell line. Flow cytometric analysis revealed changes in morphology as well as in the cell cycle profile of the W-R EtOAc and W-R BuOH-treated oral cancer Ca9-22 cells compared to the untreated control. The W-R EtOAc (125 µg/mL) exerted morphological changes and induced subG1 accumulation, suggesting apoptotic cell death. A UHPLC MS/MS analysis of the extract enabled the identification of 26 compounds, mainly alkaloids, withanolides, withanosides, and flavonoids. Pharmacophore-based inverse virtual screening proposed that BRD3 and CDK2 are the cancer-relevant targets for the annotated withanolides D (18) and O (12), and the flavonoid kaempferol (11). Molecular modeling studies highlighted the BRD3 and CDK2 as the most probable oncogenic targets of anticancer activity of these molecules. These findings highlight W. somnifera's potential as an affordable source of therapeutic agents for a range of oral malignancies.

2.
Front Pharmacol ; 15: 1337910, 2024.
Article in English | MEDLINE | ID: mdl-38370475

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.

3.
Plants (Basel) ; 13(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38256704

ABSTRACT

Lignan phytomolecules demonstrate promising anti-Alzheimer activity by alleviating dementia and preserving nerve cells. The purpose of this work is to characterize the lignans of Anisacanthus virgularis and explore their potential anti-acetylcholinesterase and anti-ageing effects. Phytochemical investigation of A. virgularis aerial parts afforded a new furofuranoid-type lignan (1), four known structural analogues, namely pinoresinol (2), epipinoresinol (3), phillyrin (4), and pinoresinol 4-O-ß-d-glucoside (5), in addition to p-methoxy-trans-methyl cinnamate (6) and 1H-indole-3-carboxaldehyde (7). The structures were established from thorough spectroscopic analyses and comparisons with the literature. Assessment of the anticholinesterase activity of the lignans 1-5 displayed noticeable enzyme inhibition of 1 (IC50 = 85.03 ± 4.26 nM) and 5 (64.47 ± 2.75 nM) but lower activity of compounds 2-4 as compared to the reference drug donepezil. These findings were further emphasized by molecular docking of 1 and 5 with acetylcholinesterase (AChE). Rapid overlay chemical similarity (ROCS) and structure-activity relationships (SAR) analysis highlighted and rationalized the anti-AD capability of these compounds. Telomerase activation testing of the same isolates revealed 1.64-, 1.66-, and 1.72-fold activations in cells treated with compounds 1, 5, and 4, respectively, compared to untreated cells. Our findings may pave the way for further investigations into the development of anti-Alzheimer and/or anti-ageing drugs from furofuranoid-type lignans.

4.
J Asian Nat Prod Res ; 24(8): 794-802, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34585632

ABSTRACT

The ethyl acetate and dichloromethane-soluble fractions, from a soft coral Sarcophyton trocheliophorum total methanolic extract, exhibited significant anti-leishmanial and cytotoxic activities. These active fractions yielded a new cembranoid diterpene (1), two known analogues [sarcotrocheliol (2) and sarcophine (3)], and two sterols [(24S)-24-methylcholesterol (4) and gorgosterol (5)]. The structure of the new diterpene (1) was determined via a detailed analysis of its spectroscopic data. Compounds 3 and 5 demonstrated noticeable cytotoxicity on A549 (IC50 17.4 ± 1.9 µg/ml) and HepG2 (IC50 17.7 ± 1.5 µg/ml) cell lines, respectively. None of the isolates 1‒5 showed detectable anti-leishmanial activity (IC50 >100 µg/ml).


Subject(s)
Anthozoa , Diterpenes , Animals , Anthozoa/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Indian Ocean , Molecular Structure , Sterols/pharmacology
5.
Molecules ; 26(6)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801151

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.


Subject(s)
Aloe/chemistry , Antiviral Agents/analysis , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Development , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Computational Biology , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/pharmacokinetics , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , COVID-19 Drug Treatment
6.
Bioorg Chem ; 108: 104643, 2021 03.
Article in English | MEDLINE | ID: mdl-33486370

ABSTRACT

Acetylcholinesterase (AChE) inhibitor and telomerase reverse transcriptase (TERT) potentiator phytochemicals are highly targeted as anti-Alzheimerꞌs disease and as an anti-ageing process. A phytochemical study of Thunbergia erecta aerial parts resulted in the isolation of ten compounds (1-10). Their structures were identified based on spectral data and comparison with literature values. The activity of our pure isolates on AChE and TERT enzymes by documented in vitro assay methods were evaluated. The results indicated that apigenin (2), vanillic acid (4), and acacetin-7-O-ß-D-glucoside (7) exhibited potent inhibition of AChE (IC50 37.33, 30.80 and 49.57 ng/mL, respectively), compared to the standard drug donepezil (IC50 31.25 ng/mL). In the TERT enzyme assay, compound 7 triggered a 1.66­fold increase in telomerase activity at the concentration of 2.85 ng/ml. This is the first study that demonstrates that compound 7 isolated from T. erecta can lead to such telomerase activity relative to control cells. Virtual screening studies including docking, rapid overlay chemical structure (ROCS), and calculated structure-property relationships (SPR) were implemented in this work. Molecular docking studies supported the binding of compounds 2, 4, and 7 through hydrogen bonds (HBs) formation to essential amino acid residues namely ARG:24 A, SER:347 A, LYS:51 A, PHE:346 A, and GLY:345 A of acetylcholinesterase. ROCS and SPR analyses realized compound 2 as a possible treatment of Alzheimer's disease and as a lead compound for drug development process through applying semisynthetic modifications.


Subject(s)
Acanthaceae/chemistry , Acetylcholinesterase/metabolism , Aging/drug effects , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Line , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Dose-Response Relationship, Drug , Electrophorus , Humans , Molecular Structure , Structure-Activity Relationship
7.
Fitoterapia ; 147: 104765, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33122132

ABSTRACT

The methanolic extract and its sub-extracts (viz, n-hexane, DCM, EtOAc and MeOH) of the soft coral Sarcophyton acutum were evaluated as anti-Leishmania major and as anticancer (against the HepG2, MCF-7, and A549 cell lines) using the MTT assay. Six polyhydroxy sterols (1-6) were isolated from the most active cytotoxic and anti-leishmanial EtOAc-soluble fraction. Their structures were established as two new polyhydroxy sterols, acutumosterols A (1) and B (2), and four known structural analogues (3-6) by intensive spectroscopic analyses, and by comparison with data of related compounds. Compound 4 exerted noticeable cytotoxicity against HepG2 cell line (IC50 17.2 ± 1.5 µg/mL), while the other pure isolates showed weak to moderate cytotoxicity (24.8 ± 2.8-57.2 ± 5.2). The results were discussed in relation to the structural features of these closely related sterols.


Subject(s)
Anthozoa/chemistry , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Biological Products/pharmacology , Sterols/pharmacology , A549 Cells , Animals , Antineoplastic Agents/isolation & purification , Antiprotozoal Agents/isolation & purification , Biological Products/isolation & purification , Egypt , Hep G2 Cells , Humans , Indian Ocean , Leishmania/drug effects , MCF-7 Cells , Molecular Structure , Sterols/isolation & purification
8.
J Tradit Complement Med ; 10(5): 478-486, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32953564

ABSTRACT

Methotrexate (MTX) is a chemotherapeutic agent and an immunosuppressant used to treat cancer and autoimmune diseases. However, its use is limited by its multi-organ toxicity, including nephrotoxicity, which is related to MTX-driven oxidative stress. Silencing oxidative stressors is therefore an important strategy in minimizing MTX adverse effects.Medicinal plants rich in phenolic compounds are probable candidates to overcome these oxidants. Herein, C. pentandra ethyl acetate extract showed powerful in vitro radical-scavenging potential (IC50 = 0.0716) comparable to those of the standard natural (ascorbic acid, IC50 = 0.045) and synthetic (BHA, IC50 = 0.056) antioxidants. The effect of C. pentandra ethyl acetate extract against MTX-induced nephrotoxicity in rats was evaluated by administering the extract (400 mg/kg/day) or the standard antioxidant silymarin (100 mg/kg/day) orally for 5 days before and 5 days after a single MTX injection (20 mg/kg, i.p.).C. pentandra showed slight superiorities over silymarin in restoring the MTX-impaired renal functions, with approximately twofold decreases in overall kidney function tests. C. pentandra also improved renal antioxidant capacity and reduced the MTX-induced oxidative stress. Moreover, C. pentandra inhibited MTX-initiated apoptotic and inflammatory cascades, and attenuated MTX-induced histopathological changes in renal tissue architecture.Phytochemical investigation of the extract led to the purification of the phenolics quercitrin (1), cinchonains 1a (2) and 1b (3), cis-clovamide (4), trans-clovamide (5), and glochidioboside (6); a structurally similar with many of the reported antioxidant and nephroprotective agents. In conclusion, these data demonstrate that C. pentandra exhibits nephroprotective effect against MTX-induced kidney damage via its antioxidant, antiapoptotic and anti-inflammatory mechanisms. TAXONOMY: Functional Disorder, Traditional Medicine, Herbal Medicine.

9.
Fitoterapia ; 143: 104541, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32151639

ABSTRACT

Four flavanolignans, ceibapentains A (1) and B (2) and cinchonains Ia (3) and Ib (4), were isolated for the first time from an ethyl acetate extract of Ceiba pentandra (L) (Bombacaceae) aerial parts. The ceibapentains A (1) and B (2) are new compounds and their structures, including the absolute configurations, were determined by HRESIMS, 1D and 2D NMR, and electronic circular dichroism analyses, then compared with reported data. Compounds 1-4 were tested for their anti-Alzheimer's activity via an assessment of their inhibitory effect on amyloid ß42 aggregation using a thioflavin T assay. The results revealed that cinchonain Ia (3) showed a higher inhibitory effect (91%) than the standard curcumin (70%). Compounds 1, 2, and 4 exhibited moderate activity, with inhibition ratios of 43%, 47%, and 58%, respectively. A molecular docking study on the binding mode of 3 and curcumin with an amyloid ß1-40 peptide fibril structure indicated a high affinity of cinchonain 1a (3) towards amyloid ß1-40 peptide, in agreement with the experimental results.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Ceiba/chemistry , Flavonolignans/pharmacology , Peptide Fragments/antagonists & inhibitors , Circular Dichroism , Egypt , Flavonolignans/isolation & purification , Humans , Molecular Docking Simulation , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Plant Extracts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...