Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Control Release ; 367: 402-424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286338

ABSTRACT

Alzheimer's disease (AD), is a neurodegenerative disorder that escalates with time, exerting a significant impact on physical and mental health and leading to death. The prevalence of AD is progressively rising along with its associated economic burden and necessitates effective therapeutic approaches in the near future. This review paper aims to offer an insightful overview of disease pathogenesis, current FDA-approved drugs, and drugs in different clinical phases. It also explores innovative formulations and drug delivery strategies, focusing on nanocarriers and long-acting medications (LAMs) to enhance treatment efficacy and patient adherence. The review also emphasizes preclinical evidence related to nanocarriers and their potential to improve drug bioavailability, pharmacokinetics, and pharmacodynamics parameters, while also highlighting their ability to minimize systemic side effects. By providing a comprehensive analysis, this review furnishes valuable insights into different pathophysiological mechanisms for future drug development. It aims to inform the development of treatment strategies and innovative formulation approaches for delivering existing molecules in Alzheimer's disease, ultimately striving to improve patient compliance.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Drug Delivery Systems , Drug Development , Treatment Outcome , Biological Availability
2.
Drug Deliv Transl Res ; 14(4): 984-1004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37903964

ABSTRACT

Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC0-10 h, Cmax, and Tmax were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.


Subject(s)
Cannabidiol , Nanostructures , Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Particle Size
3.
Int J Nanomedicine ; 18: 1007-1029, 2023.
Article in English | MEDLINE | ID: mdl-36855538

ABSTRACT

Background: Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara®) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option. Methods: Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach. The optimized formulation was then incorporated into a matrix-type topical patch as an alternative dosage form for topical application and evaluated for IMQ deposition across different skin layers in comparison to the performance of the commercial product. Additionally, our work also attempted to highlight the possibility of implementing environment-friendly practices in our IMQ-NLCs formulation development by reviewing our analytical methods and experimental designs and reducing energy and solvent consumption where possible. Results: In this study, stearyl alcohol, oleic acid, Tween® 80 (polysorbate 80), and Gelucire® 50/13 (Stearoyl polyoxyl-32 glycerides) were selected for formulation development. The formulation was optimized using a 2k factorial design and a central composite design. The optimized formulation achieved the average particle size, polydispersity index, and zeta potential of 75.6 nm, 0.235, and - 30.9 mV, respectively. Subsequently, a matrix-type patch containing IMQ-NLCs was developed and achieved a statistically significant improvement in IMQ deposition in the deeper skin layers. The IMQ deposition from the patch into the dermis layer and receptor chamber was 3.3 ± 0.9 µg/cm2 and 12.3 ± 2.2 µg/cm2, while the commercial cream only deposited 1.0 ± 0.8 µg/cm2 and 1.5 ± 0.5 µg/cm2 of IMQ, respectively. Conclusion: In summary, IMQ-NLC-loaded patches represent great potential as a topical treatment option for skin cancer with improved patient compliance.


Subject(s)
Nanostructures , Skin , Humans , Imiquimod , Food , Glycerides
4.
BMC Vet Res ; 19(1): 39, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759841

ABSTRACT

BACKGROUND: Otitis externa is a commonly diagnosed dermatological disorder in canines. The pathogens primarily involved in canine otitis externa (COE) include Staphylococcus pseudintermedius, Pseudomonas aeruginosa, Proteus mirabilis, and Malassezia pachydermatis. As COE tends to be superficial, medications delivered topically are often effective and practical in managing the condition. As such, there is a wide variety of approved topical products currently available in the market. The efficacy of topical dosage forms can be dependent on various factors such as the pharmacology of active constituents and the physicochemical properties of the formulation, including pH, viscosity, spreadability, and bio-adhesion. Currently, there is a lack of published literature available on the optimal properties of topical COE products. In this study, we compared the physicochemical properties of nine commercially available otic veterinarian products in Australia used clinically to manage COE. RESULTS: Based on our comparative analysis, the pH (6.26 ± 0.04) of an aqueous-based product was similar to a healthy dog's external auditory canal. Products containing polymers exhibited higher viscosity and bio-adhesion. Spreadability was inversely related to viscosity and Osurnia ® a product with high viscosity demonstrated the lowest spreadability. Aqueous-based otic products showed better syringebility whereas oil-based systems required higher force to expel the products. Variability in droplet size was noted. Derm Otic, Baytril Otic, and Aurizon Ear Drops had the lower standard deviation which indicates they would give a more consistent dose. CONCLUSIONS: Findings from this work provide considerations for industry researchers or formulation scientists working in the area of otic dosage formulations.


Subject(s)
Dermatologic Agents , Dog Diseases , Otitis Externa , Veterinary Drugs , Animals , Dogs , Australia , Dog Diseases/drug therapy , Otitis Externa/drug therapy , Otitis Externa/veterinary , Dermatologic Agents/analysis , Dermatologic Agents/chemistry , Veterinary Drugs/analysis , Veterinary Drugs/chemistry
5.
Drug Discov Today ; 28(1): 103414, 2023 01.
Article in English | MEDLINE | ID: mdl-36273779

ABSTRACT

Physiologic pH is vital for the normal functioning of tissues and varies in different parts of the body. The varying pH of the body has been exploited to design pH-sensitive smart oral, transdermal and vaginal drug delivery systems (DDS). The DDS demonstrated promising results in hard-to-treat diseases such as cancer and Helicobacter pylori infection. In some cases, a change in pH of tissues or body fluids has also been employed as a useful diagnostic biomarker. This paper aims to comprehensively review the development and applications of pH-sensitive DDS as well as recent advances in the field.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Neoplasms , Humans , Helicobacter Infections/drug therapy , Drug Delivery Systems/methods , Neoplasms/drug therapy , Hydrogen-Ion Concentration , Drug Carriers/therapeutic use
6.
Int J Pharm ; 628: 122324, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36280219

ABSTRACT

Despite being an effective therapy for menopausal symptoms, the use of oral estrogen is associated with low bioavailability and serious adverse effects of venous thromboembolism. Individualized therapy has been recommended to maximize benefits and curb the adverse effects, but much has not been done in developing formulations that offer flexibility to personalize therapy. In the present study, we employed an innovative 3D printing technology to design and develop bi-layered estradiol film with different infill patterns with an aim of improving bioavailability and facilitating personalized treatment. Hydroxypropyl cellulose (HPC-H) based formulation exhibited suitable rheological properties and was used as a feedstock to fabricate estradiol films with different infill patterns namely honeycomb, rectangular and plain. The back layer was prepared from a hydroxyethyl cellulose-based formulation. The resulting films were subsequently characterized in terms of their physicochemical, mechanical, environmental impact, and release characteristics among others. Films with a plain infill pattern exhibited significantly higher % elongation break and tensile strength. The in vitro drug release study revealed the fastest drug release profile for rectangular infill (96 % within 4 h) and the slowest drug release was observed for the plain infill pattern (∼35 % within 4 h), highlighting the effect of the infill pattern on release kinetics. Films with honeycomb infill patterns were selected for further characterization based on mechanical and in vitro release properties. No interaction between components of the formulation was observed and the absence of crystallinity in the final product was confirmed by Differential Scanning Calorimetry (DSC) and X-Ray Powder Diffraction analyses (XRD). The force of adhesiveness for the film was 0.13 ± 0.03 N. The predicted AUC 0-4 h, Cmax, and Tmax were 144.85 ng·h/mL, 65.97 ng/mL, and 0.83 h for a film (honeycomb infill pattern) loaded with 1 mg of estradiol. The printing process of films with honeycomb and rectangular infill patterns was evaluated as "green" using the index of Greenness Assessment of Printed Pharmaceuticals (iGAPP) tool. Our finding demonstrates the development of bi-layered estradiol film using Pressure assisted microsyringe (PAM) 3D printing and the influence of infill patterns on release kinetics and mechanical properties. The fabricated film not only facilitates the move towards personalized medicine but could also improve the bioavailability of the drugs by bypassing the hepatic first-pass metabolism and decreasing wash-out by the saliva.


Subject(s)
Estradiol , Printing, Three-Dimensional , Drug Liberation , Adhesiveness , Biological Availability
7.
Pharmaceutics ; 14(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35631519

ABSTRACT

Technological advancements have created infinite opportunities and rendered our life easier at several fronts. Nonetheless, the environment has suffered the aftermaths of modernization. Ironically, the pharmaceutical industry was found to be a significant contributor to environmental deterioration. To tackle this issue, continuous eco-evaluation of newly introduced technologies is crucial. Three-dimensional printing (3DP) is rapidly establishing its routes in different industries. Interestingly, 3DP is revolutionising the production of pharmaceuticals and is regarded as a promising approach for the fabrication of patient-centric formulations. Despite the increasing applications in the pharmaceutical field, tools that evaluate the environmental impacts of 3DP are lacking. Energy and solvent consumption, waste generation, and disposal are the main associated factors that present major concerns. For the first time, we are proposing a quantitative tool, the index of Greenness Assessment of Printed Pharmaceuticals (iGAPP), that evaluates the greenness of the different 3DP technologies used in the pharmaceutical industry. The tool provides a colour-coded pictogram and a numerical score indicating the overall greenness of the employed printing method. Validation was performed by constructing the greenness profile of selected formulations produced using the different 3DP techniques. This tool is simple to use and indicates the greenness level of the procedures involved, thereby creating an opportunity to modify the processes for more sustainable practices.

8.
Pharmaceutics ; 14(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35335917

ABSTRACT

The age-related loss of circulating estrogen that occurs during the menopausal transition manifests itself through a variety of symptoms including vasomotor (hot flushes and night sweats), genito-urinary syndrome (vaginal dryness and urinary symptoms), sexual dysfunction, mood, and sleep disturbance that often last longer than a decade. Furthermore, reductions in estrogen level increase the risks of chronic complications such as osteoporosis, cardiovascular disease, and cognitive decline among others, thereby affecting the quality of life of women. Although oral estrogens are the most widely used therapy for menopausal symptoms, they suffer from poor bioavailability, and there are concerns over their safety, creating a significant concern to consumers. Mucoadhesive buccal films are an innovative dosage form that offers several advantages including avoidance of the first-pass metabolism, fast onset of action, and importantly, improved patient acceptance. In the current work, we developed mucoadhesive estradiol film for hormonal replacement therapy using film-forming polymers. Two approaches, namely, co-solvency and nano-emulsion were evaluated to increase solubility and hence incorporate estradiol, a poorly water-soluble drug, into a formulation made from the hydrophilic polymer/s. The films were characterised for their mechanical and physicochemical properties. In-vitro release study showed that about 80% of the drug was released within 6 min from films prepared by the nano-emulsion approach, whereas it took about 10.5 min to get similar drug release from films prepared by the co-solvency approach. The ex-vivo permeation result indicates that about 15% of the drug permeated across the porcine buccal mucosa in the first 10 h from films prepared by the nano-emulsion approach, while permeation across porcine buccal mucosa was only observed at around 24 h from films prepared by the co-solvency method. The nano-emulsion films were evaluated for in vivo performance using a convolution technique using R software. The predicted Cmax and Tmax were found to be 740.74 ng mL-1 and 7 min, respectively, which were higher than previously reported in vivo concentration from oral tablets. The results demonstrated that mucoadhesive film of estradiol based on the nano-emulsion approach could be a promising platform for the delivery of estradiol through the buccal mucosa for the treatment of menopausal symptoms.

9.
Pharmaceutics ; 14(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35214072

ABSTRACT

The swine industry has evolved significantly in the recent decades, but this has come at considerable expense to piglet survival. Breeding sows for greater prolificacy has been accompanied by a greater proportion of piglets being born underweight, of lower vigor, and higher susceptibility to early mortality. Inducing sows to farrow during working hours has the potential to increase piglet survivability, but non-therapeutic injectable products are often discouraged on farms. We aimed to design and develop a novel vaginal drug delivery system (NVDDS) that could reliably trigger luteolysis and induce parturition. To achieve this, two vaginal tablets containing the luteolytic agent cloprostenol were formulated to be inserted together: one would release constituents immediately on insertion (immediate release; IR) and the other would release cloprostenol in a controlled manner (controlled release; CR). The two formulations (IR and CR) were evaluated for drug release, swelling and bio-adhesion in conditions simulating the sow vaginal environment. The IR tablet released the drug completely for 5 min whereas the CR tablet took 5 h to release 50% of the drug. Furthermore, the release kinetics were evaluated by fitting the dissolution profiles into different mathematical models. Both IR and CR tablets were best fitted by the Makoid-Banakar model which assumes release by summation of different mechanisms. The performance of the optimized formulations was studied in vivo with 161 Large White x Landrace sows of varying parity (0-5). The sows were assigned to five groups. Group 1 (SI) received a single vulval injection of cloprostenol at 0700 h (n = 32), group 2 (SDI) received the same dose split in two parts, at 0700h and 1300h (n = 33). Group 3 (IRT) animals were administered an IR tablet at 0700h (n = 32), while group 4 (IRCRT) received both IR and CR tablets at 0700 h (n = 33). Group 5 was untreated and served as a control (n = 32). The interval to farrowing was longer (p < 0.001) for controls than for treated sows, but there were no differences among cloprostenol treatments for timing of farrowing. The finding confirms the efficacy of the NVDDS for induction of farrowing in sows.

10.
Pharmaceutics ; 13(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34575600

ABSTRACT

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.

11.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34577554

ABSTRACT

Inulin's unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.

12.
BMC Infect Dis ; 17(1): 119, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28158998

ABSTRACT

BACKGROUND: Surgical site infections are commonest nosocomial infections and responsible for considerable morbidity and mortality as well as increased hospitalizations and treatment cost related to surgical operations. The aim of this study was to determine incidence and predictors of surgical site infections at surgical ward of Hawassa University Referral Hospital, Southern Ethiopia. METHODS: We performed prospective study involving 105 patients that undergone major surgical procedure at Hawassa University Referral Hospital from March 2 to May 2, 2015. Data were extracted from paper based medical charts, operational and anesthesia note, by direct observation and patients' interview. All patients were followed daily before, during and after operation for 30 days starting from the date of operation. Data were analyzed using Statistical Package for Social Science (SPSS) for window version 20.0 software. Predictors of Surgical site infections were identified using multivariable logistic regression model. P-value less than 0.05 was considered to be statistically significant. RESULT: We studied 105 patients. Sixty four patients (61%) were males. The mean age of the patients was 30.85 ± 17.72 years. The mean Body Mass Index (BMI) was 21.6 ± 4 kg/m2. Twenty patients (19.1%) developed surgical site infections. Age greater than 40 years, AOR = 7.7(95% CI [1.610-40.810 p = 0.016,]), preoperative hospital stay more than 7 days, AOR = 22.4(95% CI [4.544-110.780, p = 0.001]), duration of operation more than 1 hour, AOR = 8.01(95% CI [1.562-41.099, p = 0.013]) and administering antimicrobial prophylaxis before 1 hour of operation, AOR = 11.1 (95% CI [1.269-75.639, p = 0.014]) were independent predictors for surgical site infections. CONCLUSION: Surgical site infection is relatively high.


Subject(s)
Antibiotic Prophylaxis/statistics & numerical data , Length of Stay/statistics & numerical data , Operative Time , Surgical Procedures, Operative , Surgical Wound Infection/epidemiology , Adolescent , Adult , Age Factors , Child , Child, Preschool , Cohort Studies , Cross Infection/epidemiology , Digestive System Surgical Procedures , Ethiopia/epidemiology , Female , Hospitals, University , Humans , Incidence , Infant , Male , Middle Aged , Otorhinolaryngologic Surgical Procedures , Prospective Studies , Risk Factors , Urologic Surgical Procedures , Young Adult
13.
N Am J Med Sci ; 3(11): 499-502, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22361495

ABSTRACT

BACKGROUND: The combination of antiretroviral therapy is the corner stone of management of patients with human immune deficiency virus infection. Although antiretroviral therapy can reduce viral load to undetectable level, improve the immunity and prolong survival of patients, antiretroviral drugs are associated with many adverse effects that may be severe and affect patient adherence and quality of life. AIMS: The aim of this study was to assess management strategies under taken in patient's experienced common adverse effects of highly active antiretroviral therapy in Goba Hospital antiretroviral clinic. PATIENTS AND METHODS: A cross sectional study of patient record chart of patients who had follow-up during data collection period was done followed by patient interview. Data was filled on well structured questionnaire and analyzed using SPSS for window version 16.0. RESULTS: The common adverse effects were Rash (48.8%), Peripheral neuropathy (36.9%) and Anemia (20.24%). The rate of management was 39.3%. Pyridoxine (36.8%) was commonly prescribed drug for management of Peripheral neuropathy. Chlorphenarimine gel and Iron gluconate were common drugs for management of Rash and Anemia respectively. Use of traditional healers (57.7%) was leading reason for non-management. CONCLUSION: Rate of management for common adverse effect is low. Education should be given on adverse effects for patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...