Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7912, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575715

ABSTRACT

Recent advancements in the field of biomedical engineering have underscored the pivotal role of biodegradable materials in addressing the challenges associated with tissue regeneration therapies. The spectrum of biodegradable materials presently encompasses ceramics, polymers, metals, and composites, each offering distinct advantages for the replacement or repair of compromised human tissues. Despite their utility, these biomaterials are not devoid of limitations, with issues such as suboptimal tissue integration, potential cytotoxicity, and mechanical mismatch (stress shielding) emerging as significant concerns. To mitigate these drawbacks, our research collective has embarked on the development of protein-based composite materials, showcasing enhanced biodegradability and biocompatibility. This study is dedicated to the elaboration and characterization of an innovative suture fabricated from human serum albumin through an extrusion methodology. Employing a suite of analytical techniques-namely tensile testing, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA)-we endeavored to elucidate the physicochemical attributes of the engineered suture. Additionally, the investigation extends to assessing the influence of integrating biodegradable organic modifiers on the suture's mechanical performance. Preliminary tensile testing has delineated the mechanical profile of the Filament Suture (FS), delineating tensile strengths spanning 1.3 to 9.616 MPa and elongation at break percentages ranging from 11.5 to 146.64%. These findings illuminate the mechanical versatility of the suture, hinting at its applicability across a broad spectrum of medical interventions. Subsequent analyses via SEM and TGA are anticipated to further delineate the suture's morphological features and thermal resilience, thereby enriching our comprehension of its overall performance characteristics. Moreover, the investigation delves into the ramifications of incorporating biodegradable organic constituents on the suture's mechanical integrity. Collectively, the study not only sheds light on the mechanical and thermal dynamics of a novel suture material derived from human serum albumin but also explores the prospective enhancements afforded by the amalgamation of biodegradable organic compounds, thereby broadening the horizon for future biomedical applications.


Subject(s)
Biocompatible Materials , Tissue Engineering , Humans , Prospective Studies , Biocompatible Materials/chemistry , Sutures , Albumins , Serum Albumin, Human
2.
J Oleo Sci ; 65(9): 775-84, 2016.
Article in English | MEDLINE | ID: mdl-27581492

ABSTRACT

The present work involves a sensitive high-throughput microtiter plate based colorimetric assay for estimating lipase activity using cupric acetate pyridine reagent (CAPR). In the first approach, three factors two levels factorial design methodology was used to evaluate the interactive effect of different parameters on the sensitivity of the assay method. The optimization study revealed that the optimum CAPR concentration was 7.5% w/v, the optimum solvent was heptane and the optimum CAPR pH was 6. In the second approach, the optimized colorimetric microplate assay was used to measure lipase activity based on enzymatic hydrolysis of olive oil emulsion substrate at 37°C and 150 rpm. The emulsion substrates were formulated by using olive oil, triton X-100 (10% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 1:1:1 in the case of Candida sp. lipase. While in the case of immobilized lipozyme RMIM, The emulsion substrates were formulated by using olive oil, triton X-100 (1% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 2:1:1. Absorbance was measured at 655 nm. The stability of this assay (in terms of colored heptane phase absorbance readings) retained more than 92.5% after 24 h at 4°C compared to the absorbance readings measured at zero time. In comparison with other lipase assay methods, beside the developed sensitivity, the reproducibility and the lower limit of detection (LOD) of the proposed method, it permits analyzing of 96 samples at one time in a 96-well microplate. Furthermore, it consumes small quantities of chemicals and unit operations.


Subject(s)
Colorimetry/methods , Lipase/metabolism , Olive Oil/metabolism , Organometallic Compounds/chemistry , Soaps/chemistry , Candida/enzymology , Emulsions/chemistry , Emulsions/metabolism , Enzyme Activation , Olive Oil/chemistry
3.
J Oleo Sci ; 65(6): 477-85, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27181250

ABSTRACT

In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).


Subject(s)
Castor Oil/isolation & purification , Thermodynamics , Water/chemistry , Castor Oil/chemistry , Chromatography, Gas , Diffusion , Hydrogen-Ion Concentration , Kinetics , Pressure , Seeds/chemistry , Viscosity
4.
J Oleo Sci ; 63(6): 545-54, 2014.
Article in English | MEDLINE | ID: mdl-24881769

ABSTRACT

Lipases are the most widely used class of enzymes in organic synthesis. Enzymatic processes have been implemented in a broad range of industries as they are specific, save raw materials, energy and chemicals, environmentally friendly and fast in action compared to conventional processes. The most notable benefit is the moderate process temperature and pressure with no unwanted side reactions. In the past two decades, intensive research was carried out towards enzymatic synthesis of oleochemicals. This review has a sharp focus on the current implemented enzymatic processes for producing different oleochemicals such as fatty acids, glycerin, biodiesel, biolubricant and different alkyl esters via different processes including hydrolysis, esterification, transesterification and intraesterification.


Subject(s)
Biotechnology/methods , Biotechnology/trends , Chemical Industry/methods , Chemical Industry/trends , Enzymes , Fatty Acids/chemical synthesis , Glycerol/chemical synthesis , Lipase , Biofuels , Bioreactors , Chemical Industry/economics , Esterification , Esters/chemical synthesis , Fermentation , Forecasting , Hydrolysis , Lubricants/chemical synthesis , Pressure , Temperature
5.
Water Sci Technol ; 68(5): 974-81, 2013.
Article in English | MEDLINE | ID: mdl-24037146

ABSTRACT

In this work, effective, cheap and scalable methodology is introduced to treat oily wastewater. The water produced from car-wash processes was utilized as a model because it has various pollutants - oil, lubricants, detergents, solid particles, etc. The results showed that the turbidity and chemical oxygen demand (COD) values dramatically decrease by using the proposed treatment process, which consists of coagulation, flocculation, sand filtration, and oxidation followed by sand as well as activated carbon filtration. Moreover, the operating conditions were optimized. Without adjustment of the pH value of car-wash wastewater, it was found that 200 ppm of ferric chloride, as a coagulant, and 1 ppm of potassium permanganate, as an oxidant, are the optimum doses. The COD and turbidity values of the final treated wastewater were reduced by almost 88 and 100%, respectively. A prototype with 15 L capacity was designed and fabricated to investigate the scaling up and continuity of the proposed treatment strategy. The results were very promising and indicated that the introduced methodology can be industrially applied.


Subject(s)
Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Filtration , Flocculation , Hydrogen-Ion Concentration
6.
Biotechnol Prog ; 24(2): 466-75, 2008.
Article in English | MEDLINE | ID: mdl-18251519

ABSTRACT

We investigated the intermolecular mechanism and kinetics of the synthesis of a novel biodegradable protein-based plastic from bovine serum albumin under subcritical water conditions using batch reactors. The reaction mechanism could be viewed as a chain reaction stabilized by the formation of intermolecular disulfide bonds. The kinetic analysis was based on non-steady-state kinetics using a theoretical model developed in one of our previous works. The activation energy and pre-exponential factor were found to be 7.2 kJ/mol and 0.9 s-1, respectively. These low values signify that the reaction is relatively temperature-insensitive with some diffusion limitation.


Subject(s)
Plastics/chemical synthesis , Proteins/chemical synthesis , Water/chemistry , Air Pressure , Amino Acid Sequence , Bioreactors , Hydrolysis , Kinetics , Microscopy, Electron , Molecular Sequence Data , Plastics/chemistry , Powders , Proteins/chemistry , Serum Albumin, Bovine/chemistry , Solutions , Spectrophotometry, Ultraviolet , Temperature
7.
Biotechnol Bioeng ; 86(3): 365-73, 2004 May 05.
Article in English | MEDLINE | ID: mdl-15083515

ABSTRACT

The initial rates of carboxybenzoyl-alanyl-l-leucyl-amide (Z-L-Ala-L-Leu-NH(2)) synthesis from carboxybenzoyl-L-alanine (Z-L-Ala) and L-leucineamide (L-Leu-NH(2)) and Z-L-Ala-L-Leu-NH(2) hydrolysis in a homogeneous dimethyl sulfoxide-aqueous buffer solution [1:1 (v/v)] system catalyzed by PST-01 protease from Pseudomonas aeruginosa were measured under a wide range of Z-L-Ala, L-Leu-NH(2) and Z-L-Ala-L-Leu-NH(2) concentrations. The initial rates of the synthetic reaction, in which Z-L-Ala-L-Leu-NH(2) was produced from Z-L-Ala and L-Leu-NH(2), were inhibited by the substrates. Furthermore, the initial rates of the synthetic reaction were not inhibited by the product Z-L-Ala-L-Leu-NH(2), and those of the hydrolytic reaction were inhibited by Z-L-Ala and L-Leu-NH(2). All the initial rate data of the synthetic and hydrolytic reactions were well correlated with the rate equation derived based on the proposed reaction scheme.


Subject(s)
Endopeptidases/chemistry , Pseudomonas aeruginosa/enzymology , Catalysis , Chromatography, Gel , Dipeptides/chemical synthesis , Dipeptides/isolation & purification , Electrophoresis, Polyacrylamide Gel , Endopeptidases/metabolism , Hydrolysis , Kinetics , Molecular Weight , Pseudomonas aeruginosa/chemistry , Solvents/analysis , Substrate Specificity
8.
Biotechnol Prog ; 18(4): 706-12, 2002.
Article in English | MEDLINE | ID: mdl-12153302

ABSTRACT

Two types of new polymer-bound adenine nucleotides were synthesized by coupling adenine nucleotides (ATP and ADP) with starburst polyamidoamine (PAMAM) dendrimers. The first type was obtained by coupling native adenine nucleotides directly with a carboxy-terminated PAMAM dendrimer. In the second type, the nucleotides were modified by introducing a spacer arm containing a carboxylic end group (N(6)-R-ATP and N(6)-R-ADP) and coupled with an amine-terminated PAMAM dendrimer. Both types of the dendrimers were coupled with native or the modified nucleotides using the well-known carbodiimide activation technique. The optimum coupling pH and temperature were 4 and 30 degrees C, respectively, for preparing the carboxy-terminated PAMAM-bound ATP or ADP, and were 9 and 50 degrees C, respectively, for preparing the amine-terminated PAMAM-bound N(6)-R-ATP or N(6)-R-ADP. The ATP or ADP contents in the synthesized polymers were found to be 4 mol of ATP or of ADP/mol of carboxy-terminated PAMAM-bound ATP or ADP and 25 mol of ATP or of ADP/mol of amine-terminated PAMAM-bound N(6)-R-ATP or N(6)-R-ADP. The coenzymatic activities relative to the native ATP of the carboxy-terminated PAMAM-bound ATP against glucokinase and hexokinase were 16 and 7%, respectively, and those of the amine-terminated PAMAM-bound N(6)-R-ATP 2 and 1%, respectively. The coenzymatic activities relative to the native ADP of the carboxy-terminated PAMAM-bound ADP and the amine-terminated PAMAM-bound N(6)-R-ADP against acetate kinase were 24 and 3.5%, respectively.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Polyamines/chemistry , Polymers/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Chromatography, Gel , Dendrimers , Drug Stability , Hydrogen-Ion Concentration , Kinetics , Phosphotransferases/metabolism , Spectrum Analysis , Substrate Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...