Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Asian J ; : e202301129, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38403850

ABSTRACT

In this study, we employed a rapid and efficient microwave method to synthesize Metal-Organic Framework (MOF-303), which was subsequently embedded onto Palladium/Carbon (Pd/C) electrodes. The resulting hybrid material, Pd/C@MOF-303, was thoroughly characterized, and its performance in the Hydrogen Evolution Reaction (HER) was systematically investigated. The Pd/C@MOF-303 composite exhibited remarkable improvements in HER performance compared to the unmodified Pd/C electrode. At a benchmark current density of 10 mA cm-2 , the overpotentials for Pd/C and Pd/C@MOF-303 were measured at 185 mV and 175 mV, respectively. This reduction in overpotential highlights the superior catalytic activity of the Pd/C@MOF-303 hybrid material in facilitating the HER. Furthermore, the Pd/C@MOF-303 electrode demonstrated enhanced HER activity, increased mass activity, and excellent charge transfer rates compared to its unmodified counterpart, Pd/C. The findings underscore the significance of the hydrophilic MOF-303 in tailoring the surface characteristics of electrocatalysts, thereby offering insights into the design principles for advanced materials with superior performance in electrochemical applications.

2.
ACS Omega ; 8(39): 36228-36236, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810635

ABSTRACT

CO2 capture is a useful strategy for controlling the risks associated with global warming. The design of an adsorbent is essential for clean and potentially energy-efficient adsorption-based carbon capture processes. This study reports a facile and moderately temperature single-stage combined pyrolysis and activation strategy for the synthesis of nitrogen-doped carbons for high-performance CO2 capture. Using nitrogen-rich Albizia procera leaves as the precursor and carrying out single-stage pyrolysis and activation at temperatures of 500, 600, and 700 °C in the presence NaHCO3 as an activating agent, carbons with different surface characteristics and ultrahigh weight percentage (22-25%) of nitrogen were obtained. The subtle differences in surface characteristics and nitrogen content had a bearing on the CO2 adsorption performance of the resultant adsorbents. Outstanding results were achieved, with a CO2 adsorption capacity of up to 2.5 mmol/g and a CO2 over N2 selectivities reaching 54. The isotherm results were utilized to determine the performance indicators for a practical vacuum swing adsorption process. This study provides a practical strategy for the efficient synthesis of nitrogen-doped carbons for various adsorption applications.

3.
Front Chem ; 11: 1265324, 2023.
Article in English | MEDLINE | ID: mdl-37744064

ABSTRACT

In this article, newly designed 3D porous polymers with tuned porosity were synthesized by the polycondensation of tetrakis (4-aminophenyl) methane with pyrrole to form M1 polymer and with phenazine to form M2 polymer. The polymerization reaction used p-formaldehyde as a linker and nitric acid as a catalyst. The newly designed 3D porous polymers showed permanent porosity with a BET surface area of 575 m2/g for M1 and 389 m2/g for M2. The structure and thermal stability were investigated by solid 13C-NMR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The performance of the synthesized polymers toward CO2 and H2 was evaluated, demonstrating adsorption capacities of 1.85 mmol/g and 2.10 mmol/g for CO2 by M1 and M2, respectively. The importance of the synthesized polymers lies in their selectivity for CO2 capture, with CO2/N2 selectivity of 43 and 51 for M1 and M2, respectively. M1 and M2 polymers showed their capability for hydrogen storage with a capacity of 66 cm3/g (0.6 wt%) and 87 cm3/g (0.8 wt%), respectively, at 1 bar and 77 K. Molecular dynamics (MD) simulations using the grand canonical Monte Carlo (GCMC) method revealed the presence of considerable microporosity on M2, making it highly selective to CO2. The exceptional removal capabilities, combined with the high thermal stability and microporosity, enable M2 to be a potential material for flue gas purification and hydrogen storage.

4.
Chem Asian J ; 18(17): e202300481, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37455604

ABSTRACT

CO2 capture is a practical approach to mitigating the impacts of global warming. Adsorption-based carbon capture is a clean and potentially energy-efficient method whose performance greatly depends on adsorbent design. In this study, we explored the use of jute-derived carbon as a high-performance adsorbent for CO2 capture. The carbons were produced by pyrolyzing powdered jute sticks with NaHCO3 as an activating agent at 500-700 °C. Impressive adsorption capacities of up to 2.5 mmol ⋅ g-1 and CO2 /N2 selectivities of up to 54 were achieved by adjusting the pore size distribution and surface functionalization. Based on the isotherm results, the working capacities, regenerabilities, and potentials for CO2 separation were determined for a practical vacuum swing adsorption process. The adsorbent materials were characterized by XRD, FTIR, Raman, FESEM and N2 sorption at 77 K. This study provides a general approach for designing adsorbents for various gas-separation applications.

5.
Polymers (Basel) ; 15(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299274

ABSTRACT

The design of novel porous solid sorbents for carbon dioxide capture is critical in developing carbon capture and storage technology (CCS). We have synthesized a series of nitrogen-rich porous organic polymers (POPs) from crosslinking melamine and pyrrole monomers. The final polymer's nitrogen content was tuned by varying the melamine ratio compared to pyrrole. The resulting polymers were then pyrolyzed at 700 °C and 900 °C to produce high surface area nitrogen-doped porous carbons (NPCs) with different N/C ratios. The resulting NPCs showed good BET surface areas reaching 900 m2 g-1. Owing to the nitrogen-enriched skeleton and the micropore nature of the prepared NPCs, they exhibited CO2 uptake capacities as high as 60 cm3 g-1 at 273 K and 1 bar with significant CO2/N2 selectivity. The materials showed excellent and stable performance over five adsorption/desorption cycles in the dynamic separation of the ternary mixture of N2/CO2/H2O. The method developed in this work and the synthesized NPCs' performance towards CO2 capture highlight the unique properties of POPs as precursors for synthesizing nitrogen-doped porous carbons with a high nitrogen content and high yield.

6.
Chem Asian J ; 18(11): e202201254, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37026400

ABSTRACT

A catalytic system for selective transformation of furfural into biofuel is highly desirable. However, selective hydrogenation of the C=O group over the furan ring of furfural to produce ether in one step is challenging. Here, we report the preparation of a series of magnetically recoverable FeCo@GC nano-alloys (37-40 nm). Fe3 O4 (3-5 nm) and MOF-71 (Co), used as the Co and C source, were mixed together in a range of Fe/Co ratios, and then encapsulated in a graphitic carbon (GC) shell to prepare such alloys. STEM-HAADF shows the darker core made of FeCo and the shell of graphitic carbon. Furfural is hydrogenated to produce >99% isopropyl furfuryl ether in isopropanol with >99% conversion at 170 °C under 40 bars of H2 , whereas n-chain alcohol, such as ethanol, produces corresponding ethyl levulinate in 93%. The synergistic effect due to the charge transfer from Fe to Co leads to higher reactivity of FeCo@GC. The catalyst, which can be separated from the reaction medium using a simple magnet without significant damage to the surface or composition, retained its reactivity and selectivity for up to four consecutive cycles.

7.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615584

ABSTRACT

The separation of oil/water emulsions has attracted considerable attention for decades due to the negative environmental impacts brought by wastewater. Among the various membranes investigated for separation, polyvinylidene fluoride (PVDF) membranes have shown significant advantages of ease of fabrication, high selectivity, and fair pore distribution. However, PVDF membranes are hydrophobic and suffer from severe fouling resulting in substantial flux decline. Meanwhile, the incorporation of wettable substrates during fabrication has significantly impacted the membrane performance by lowering the fouling propensity. Herein, we report the fabrication of an iron-containing porphyrin (hemin)-modified multi-walled carbon nanotube incorporated PVDF membrane (HA-MWCNT) to enhance fouling resistance and the effective separation of oil-in-water emulsions. The fabricated membrane was thoroughly investigated using the FTIR, SEM, EDX, AFM, and contact angle (CA) analysis. The HA-MWCNT membrane exhibited a water CA of 62° ± 0.5 and excellent pure water permeance of 300.5 L/m2h at 3.0 bar (400% increment), in contrast to the pristine PVDF, which recorded a CA of 82° ± 0.8 and water permeance of 59.9 L/m2h. The hydrophilic HA-MWCNT membrane further showed an excellent oil rejection of >99% in the transmembrane pressure range of 0.5−2.5 bar and a superb flux recovery ratio (FRR) of 82%. Meanwhile, the classical molecular dynamics (MD) simulations revealed that the HA-MWCNT membrane had greater solvent-accessible pores, which enhanced water permeance while blocking the hydrocarbons. The incorporation of the hemin-modified MWCNT is thus an excellent strategy and could be adopted in the design of advanced membranes for oil/water separation.


Subject(s)
Nanotubes, Carbon , Water Purification , Emulsions , Hemin , Membranes, Artificial , Water Purification/methods
8.
ACS Omega ; 7(17): 14535-14543, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557682

ABSTRACT

The facile and environmentally friendly synthesis of porous organic polymers with designed polar functionalities decorating the interior frameworks as an excellent adsorbent for selective carbon dioxide capture and metal ion removal is a target worth pursuing for environmental applications. In this regard, two azo-linked porous organic polymers denoted man-Azo-P1 and man-Azo-P2 were synthesized in water by the azo-linking of 4,4'-diaminobiphenyl (benzidine) and 4,4'-methylenedianiline, respectively, with 1,3,5-trihydroxybenzene. The resulting polymers showed good BET surface areas of 290 and 78 m2 g-1 for man-Azo-P1 and man-Azo-P2, respectively. Due to the enriched core functionality of the azo (-N=N-) and hydroxyl groups along with the porous frameworks, man-Azo-P1 exhibited a good CO2 uptake capacity of 32 cm3 g-1 at 273 K and 1 bar, in addition to the remarkable removal of lead (Pd), chromium (Cr), arsenic (As), nickel (Ni), copper (Cu), and mercury (Hg) ions. This performance of the synthesized man-Azo-P1 and man-Azo-P2 in the dual application of CO2 capture and heavy metal ion removal highlights the unique properties of azo-linked POPs as excellent and stable sorbent materials for the current challenging environmental applications.

9.
Chem Rec ; 22(7): e202100230, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34757694

ABSTRACT

The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.


Subject(s)
Metal-Organic Frameworks , Adsorption , Carbon Dioxide , Metals
10.
Chem Rec ; 21(7): 1771-1791, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33955166

ABSTRACT

Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.

11.
ACS Appl Mater Interfaces ; 12(42): 47984-47992, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32986948

ABSTRACT

Natural gas sweetening currently requires multistep, complex separation processes to remove the acid gas contaminants, carbon dioxide and hydrogen sulfide. In addition to being widely recognized as energy inefficient and cost-intensive, the effectiveness of this conventional process also suffers considerably because of limitations of the sorbent materials it employs. Herein, we report a new porous organic polymer, termed KFUPM-5, that is demonstrated to be effective in the concurrent separation of both hydrogen sulfide and carbon dioxide from a mixed gas stream at ambient conditions. To understand the ability of KFUPM-5 to selectively capture these gas molecules, we performed both pure-component thermodynamic and mixed gas kinetic adsorption studies and correlated these results with theoretical molecular simulations. Our results show that the underlying polar backbone of KFUPM-5 provides favorable adsorption sites for the selective capture of these gas molecules. The outcome of this work lends credence to the prospect that, for the first time, porous organic polymers can serve as sorbents for industrial natural gas sweetening processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...