Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Pediatr Genet ; 13(3): 215-222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39086442

ABSTRACT

Pontocerebellar hypoplasia type 9 (PCH-9) is a very rare autosomal recessive neurodegenerative disorder. Affected infants present early with severe developmental delay, spasticity, with the unique magnetic resonance imaging picture of thin corpus callosum, atrophied pons, and cerebellum. It is caused by loss of function mutations in the AMPD2 gene, encoding for the adenosine monophosphate deaminase enzyme-paralog 2. This gene is expressed in different somatic tissues with high level of expression in cerebellum and its encoded enzyme catalyzes a critical step in de novo biosynthesis of purines and its deficiency in the developing neurons severely affects neuronal differentiation and cell viability. We clinically evaluated an Emirati patient presented with severe developmental and growth delay, as well as corpus callosum agenesis and atrophy of brainstem and cerebellum. We performed exome sequencing, Sanger sequencing, and segregation analysis to identify the genetic cause of the phenotype, followed by in silico and in vitro analysis. We identified the novel variant (NM_004037.9:c.1471G > A) in AMPD2 gene leading to a single amino acid substitution (p.Gly491Arg) in adenosine monophosphate deaminase-2 enzyme. This variant is predicted to be pathogenic using several in silico tools, and resulted in a decrease in the enzyme function in the patient's polymorphonuclear cells by 82% (95% confidence interval: 73.3-91.7%, p = 0.029) compared with the control. This data establishes that the affected child is affected by PCH-9. Furthermore, we review all reported cases in literature to summarize the main clinical features of this rare disease.

2.
Clin Genet ; 101(4): 403-410, 2022 04.
Article in English | MEDLINE | ID: mdl-34988996

ABSTRACT

Here, we delineate the phenotype of two siblings with a bi-allelic frameshift variant in MMP15 gene with congenital cardiac defects, cholestasis, and dysmorphism. Genome sequencing analysis revealed a recently reported homozygous frameshift variant (c.1058delC, p.Pro353Glnfs*102) in MMP15 gene that co-segregates with the phenotype in the family in a recessive mode of inheritance. Relative quantification of MMP15 mRNA showed evidence of degradation of the mutated transcript, presumably by nonsense mediated decay. Likewise, MMP15: p.Gly231Arg, a concurrently reported homozygous missense variant in another patient exhibiting a similar phenotype, was predicted to disrupt zinc ion binding to the MMP-15 enzyme catalytic domain, which is essential for substrate proteolysis, by structural modeling. Previous animal models and cellular findings suggested that MMP15 plays a crucial role in the formation of endocardial cushions. These findings confirm that MMP15 is an important gene in human development, particularly cardiac, and that its loss of function is likely to cause a severe disorder phenotype.


Subject(s)
Cholestasis , Heart Defects, Congenital , Jaundice , Matrix Metalloproteinase 15/genetics , Animals , Failure to Thrive/genetics , Heart Defects, Congenital/genetics , Homozygote , Humans , Phenotype
3.
Child Neurol Open ; 6: 2329048X19880647, 2019.
Article in English | MEDLINE | ID: mdl-31763347

ABSTRACT

Spastic tetraplegia, thin corpus callosum, and progressive microcephaly is a recently described very rare autosomal recessive neurodevelopmental disorder. This disease was first described in 2015 in several families from the Ashkenazi Jewish ancestry with a founder mutation in SLC1A4 (p.E256K) as the underlying genetic cause. SLC1A4 gene encodes for the amino acid transporter ASCT1 that is necessary for serine cellular transport to neurons. We clinically evaluated 2 Pakistani siblings with severe global developmental delay, progressive microcephaly, and seizure disorder. We performed exome sequencing, Sanger sequencing, and segregation analysis to identify the genetic cause of the phenotype followed by in silico analysis to evaluate the pathogenicity of the identified mutation. We identified a novel homozygous variant (c.573T>G) in both patients. The mutation is predicted to cause nonsense mutation (p.Y191*) in the ASCT1 protein. Here, we report the fifth disease causing mutation in SLC1A4 gene and review all previously reported cases.

4.
Mol Syndromol ; 10(3): 171-176, 2019 May.
Article in English | MEDLINE | ID: mdl-31191207

ABSTRACT

The DONSON gene encodes the downstream neighbor of SON, a replisome component that stabilizes the replication fork during replication. A severe form of microcephalic dwarfism, microcephaly-micromelia syndrome (MIMIS), has been recently associated with DONSON biallelic loss of function. Affected fetuses suffer severe growth restriction, microcephaly, and variable limb malformations which result in intrauterine or perinatal death. All described fetuses carried a homozygous founder mutation (c.1047-9A>G), a splice-altering variant that leads to transcript degradation. We evaluated 2 newborns from a consanguineous Emirati family with severe microcephaly, micromelia, craniofacial dysmorphism, and skeletal abnormalities; both died shortly after birth. Here, we report the second homozygous loss-of-function variant (c.763C>T) in DONSON causing MIMIS, and we provide detailed clinical description of this very rare disorder. In addition, we review all MIMIS cases in the literature and summarize the striking features of this phenotype. This manuscript is aimed to increase the clinical understanding of this rare, extremely severe disorder and encourage clinical and molecular geneticists to consider screening for DONSON loss-of-function variants in families with recurrent pregnancy loss and/or perinatal deaths.

6.
Am J Med Genet A ; 176(9): 1996-2003, 2018 09.
Article in English | MEDLINE | ID: mdl-30055085

ABSTRACT

Non-immune hydrops fetalis (NIHF) is the abnormal accumulation of serous fluid in more than two fetal or neonatal interstitial spaces due to nonimmune causes. It is a serious condition that requires extensive medical care as it indicates severe fetal compromise. We clinically evaluated four patients from two branches of a highly consanguineous family from the UAE with NIHF using whole exome sequencing and in silico analysis. Fetal onset pleural and peritoneal effusions were detected in all four patients and were born with moderate to severe hydrops fetalis that resolved with age. Follow up showed relatively normal growth and development apart from mild ascites and haemangiomas in all affected children, recurrent hydrocele in all affected males, intestinal malabsorption in two patients, dysmorphic features in two patients, and congenital cardiac defects in three out of four patients. Molecular testing identified a homozygous eight nucleotide deletion in THSD1 gene (NM_199263:c.1163_1170delGGCCAGCC, p.Arg388Glnfs*66) as the underlying cause of this phenotype in the affected children. The novel variant cosegregates with the described phenotype in an autosomal recessive mode of inheritance and is predicted to be pathogenic as it leads to a truncated protein that lost important structural and functional domains. Thrombospondin-1 domain containing protein 1 gene THSD1 has been recently associated with of NIHF and embryonic lethality. Here, we report the novel truncating THSD1 variant, and describe new clinical features that have not been reported previously thus expanding the phenotype associate with loss-of-function mutations in THSD1 causing NIHF.


Subject(s)
Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Hemangioma/diagnosis , Hemangioma/genetics , Hydrops Fetalis/diagnosis , Hydrops Fetalis/genetics , Mutation , Thrombospondins/genetics , Alleles , Child, Preschool , Computational Biology/methods , Consanguinity , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , Humans , Infant , Male , Sequence Analysis, DNA , Syndrome , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL