Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37111968

ABSTRACT

Membrane distillation (MD) is a thermal-based membrane operation with high potential for use in the treatment of aqueous streams. In this study, the linear relationship between the permeate flux and the bulk feed temperature for different electrospun polystyrene membranes is discussed. The dynamics of combined heat and mass transfer mechanisms across different membrane porosities of 77%, 89%, and 94%, each with different thicknesses, are examined. The main results for the effect of porosity with respect to the thermal efficiency and evaporation efficiency of the DCMD system are reported for electrospun polystyrene membranes. A 14.6% increase in thermal efficiency was noted for a 15% increase in membrane porosity. Meanwhile, a 15.6% rise in porosity resulted in a 5% increase in evaporation efficiency. A mathematical validation along with computational predictions is presented and interlinked with the maximum thermal and evaporation efficiencies for the surface membrane temperatures at the feed and temperature boundary regions. This work helps to further understand the interlinked correlations of the surface membrane temperatures at the feed and temperature boundary regions with respect to the change in membrane porosity.

2.
Membranes (Basel) ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35448393

ABSTRACT

Membrane distillation (MD) is an attractive separation process for wastewater treatment and desalination. There are continuing challenges in implementing MD technologies at a large industrial scale. This work attempts to investigate the desalination performance of a pilot-scale direct contact membrane distillation (DCMD) system using synthetic thermal brine mimicking industrial wastewater in the Gulf Cooperation Council (GCC). A commercial polyethylene membrane was used in all tests in the DCMD pilot unit. Long-term performance exhibited up to 95.6% salt rejection rates using highly saline feed (75,500 ppm) and 98% using moderate saline feed (25,200 ppm). The results include the characterization of the membrane surface evolution during the tests, the fouling determination, and the assessment of the energy consumption. The fouling effect of the polyethylene membrane was studied using Humic acid (HA) as the feed for the whole DCMD pilot unit. An optimum specific thermal energy consumption (STEC) reduction of 10% was achieved with a high flux recovery ratio of 95% after 100 h of DCMD pilot operation. At fixed operating conditions for feed inlet temperature of 70 °C, a distillate inlet temperature of 20 °C, with flowrates of 70 l/h for both streams, the correlations were as high as 0.919 between the pure water flux and water contact angle, and 0.963 between the pure water flux and salt rejection, respectively. The current pilot unit study provides better insight into existing thermal desalination plants with an emphasis on specific energy consumption (SEC). The results of this study may pave the way for the commercialization of such filtration technology at a larger scale in global communities.

3.
Nanomaterials (Basel) ; 12(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35457948

ABSTRACT

A simple temperature-assisted solution interaction technique was used to functionalize and reduce graphene oxide (GO) using tetraethylenepentamine (TEPA) with less chemicals, low temperature, and without using other reducing agents. GO nanosheets, produced using a modified Hummers' method, were functionalized using two different GO:TEPA ratios (1:5 and 1:10). The reduction of GO was evaluated and confirmed by different spectroscopic and microscopic techniques. The FTIR and XPS spectra revealed that most of the oxygenated groups of GO were reduced. The emergence of amide groups in the XPS survey of the rGO-TEPA samples confirmed the successful reaction of TEPA with the carboxyl groups on the edges of GO. The replacement of the oxygenated groups increased the carbon/oxygen (C/O) ratio of GO by approximately 60%, suggesting a good reduction degree. It was found that the I2D/ID+D' ratio and the relative intensity of the D″ band clearly increased after the reduction reaction, suggesting that these bands are good estimators for the reduction degree of GO. The morphological structure of GO was also affected by the reaction with TEPA, which was confirmed by SEM and TEM images. The TEM images showed that the transparent GO sheets became denser and opaque after functionalization with TEPA, indicating an increase in the stacking level of the GO sheets. This was further confirmed by the XRD analysis, which showed a clear decrease in the d-spacing, caused by the removal of oxygenated groups during the reduction reaction.

4.
Molecules ; 24(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925735

ABSTRACT

An artificial aging study of novel heat absorbers based on phase change materials (PCMs) prepared from recycled high-density polyethylene (HDPE), paraffin wax (PW), and expanded graphite (EG) was investigated. The optimal composition of PCMs contained 40 wt% HDPE, whereas the paraffin wax content ranged from 40 to 60 wt% and the expanded graphite content ranged from 5 to 15 wt%. PCMs were artificially aged through exposure to UV irradiation, enhanced temperature, and humidity. It was clearly demonstrated that the addition of EG to PCMs led to the suppression of PW leakage and improved the photooxidation stability of the PCMs during the aging process. The best performance was achieved by adding 15 wt% of EG to the PCMs. The sample shows a leakage of paraffin wax below 10%, retaining a melting enthalpy of PW within PCMs of 54.8 J/g, a thermal conductivity of 1.64 W/mK and the lowest photooxidation, characterized by an increase in the concentration of carbonyl groups from all investigated materials after artificial aging. Furthermore, PCMs mixed with EG exhibited good mechanical properties, even after 100 days of exposure to artificial aging. Finally, this work demonstrates a justification for the use of recycled plastics in the formation of PCMs.


Subject(s)
Graphite/chemistry , Hot Temperature , Paraffin/chemistry , Polyethylene/chemistry , Waxes/chemistry , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Thermal Conductivity , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL