Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pediatr ; 8: 383, 2020.
Article in English | MEDLINE | ID: mdl-32766185

ABSTRACT

Background: Dyggve-Melchior-Clausen syndrome (DMC) is a skeletal dysplasia with associated defects of brain development and intelligence. The truncating pathogenic variants in DYM are the most frequent cause of DMC. Smith-McCort (SMC), another skeletal dysplasia, is also caused by non-synonymous DYM variants. Methods and Results: In the current study, we examined a Pakistani consanguineous family with three affected members. Clinical features like spondyloepimetaphyseal dysplasia, indicative of characteristic skeletal abnormalities, and intellectual disability were observed. Our male patients had microcephaly and coarse facial features while the female patient did not represent microcephaly or abnormal facies, which are significant features of DMC patients. Sanger sequencing identified a novel homozygous frameshift insertion (c.95_96insT, p.W33Lfs*14) in DYM, which likely leads to nonsense-mediated decay (NMD). Conclusion: The novel frameshift change verifies the fact that pathogenic variants in DYM are the most frequent cause of DMC.

2.
Saudi J Biol Sci ; 27(1): 324-334, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31889854

ABSTRACT

Mitochondrial disorders (MIDs) shows overlapping clinical presentations owing to the genetic and metabolic defects of mitochondria. However, specific relationship between inherited mutations in nuclear encoded mitochondrial proteins and their functional impacts in terms of metabolic defects in patients is not yet well explored. Therefore, using high throughput whole exome sequencing (WES), we screened a chronic kidney disease (CKD) and sensorineural hearing loss (SNHL) patient, and her family members to ascertain the mode of inheritance of the mutation, and healthy population controls to establish its rare frequency. The impact of mutation on biophysical characteristics of the protein was further studied by mapping it in 3D structure. Furthermore, LC-MS tandem mass spectrophotometry based untargeted metabolomic profiling was done to study the fluctuations in plasma metabolites relevant to disease causative mutations and kidney damage. We identified a very rare homozygous c.631G > A (p.Val211Met) pathogenic mutation in RMND1 gene in the proband, which is inherited in an autosomal recessive fashion. This gene is involved in the mitochondrial translational pathways and contribute in mitochondrial energy metabolism. The p.Val211Met mutation is found to disturb the structural orientation (RMSD is -2.95 Å) and stability (ΔΔG is -0.552 Kcal/mol) of the RMND1 protein. Plasma metabolomics analysis revealed the aberrant accumulation of metabolites connected to lipid and amino acid metabolism pathways. Of these metabolites, pathway networking has discovered ceramide, a metabolite of sphingolipids, which plays a role in different signaling cascades including mitochondrial membrane biosynthesis, is highly elevated in this patient. This study suggests that genetic defects in RMND1 gene alters the mitochondrial energy metabolism leading to the accumulation of ceramide, and subsequently promote dysregulated apoptosis and tissue necrosis in kidneys.

SELECTION OF CITATIONS
SEARCH DETAIL
...