Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 54(4): 215, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35723776

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious transboundary disease of cloven-hoofed animals. In Iran, the disease is endemic with outbreaks occurring throughout the year. Mass vaccination of domestic ruminants has been adopted as a preventive strategy. A study was conducted to evaluate the effectiveness of currently in use FMD vaccines using official disease surveillance data. Surveillance data of FMD outbreaks and vaccination in cattle farms from January 2017 to March 2019 was obtained from the Iranian Veterinary Organization (IVO). A case-control study comprising 190 laboratory-confirmed cases and 380 randomly selected controls, frequency-matched by location and production type, was performed to estimate vaccine effectiveness (VE) of vaccines in industrial and semi-industrial farms. Multivariable logistic regression was used to estimate odds ratios based on brand of vaccine, time since vaccination, and within-farm vaccination coverage. A total of 2297 outbreaks occurred during the study period with majority (75%) reported from village epi-units. Only 38% of industrial and semi-industrial farms recorded vaccination during the studied period. Vaccination was effective against clinical disease with the highest VE observed in farms vaccinated with commercial vaccine brand A (VE = 0.90%, 95% CI 0.79-0.96), vaccinating > 94% of herd population (VE = 0.77%, 95%CI 0.54-0.98) and in < 35 days after vaccination (VE = 0.56%, 95% CI 0.04-0.8). The current high-potency vaccines confer medium protection in investigated cattle farms. The high occurrence of the disease in village epi-units and low coverage of vaccination in industrial and semi-industrial farms will contribute to maintenance and circulation of the virus in the susceptible population.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Case-Control Studies , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Iran/epidemiology , Vaccination/veterinary
2.
Mol Biol Evol ; 38(10): 4346-4361, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34115138

ABSTRACT

Livestock farming across the world is constantly threatened by the evolutionary turnover of foot-and-mouth disease virus (FMDV) strains in endemic systems, the underlying dynamics of which remain to be elucidated. Here, we map the eco-evolutionary landscape of cocirculating FMDV lineages within an important endemic virus pool encompassing Western, Central, and parts of Southern Asia, reconstructing the evolutionary history and spatial dynamics over the last 20 years that shape the current epidemiological situation. We demonstrate that new FMDV variants periodically emerge from Southern Asia, precipitating waves of virus incursions that systematically travel in a westerly direction. We evidence how metapopulation dynamics drive the emergence and extinction of spatially structured virus populations, and how transmission in different host species regulates the evolutionary space of virus serotypes. Our work provides the first integrative framework that defines coevolutionary signatures of FMDV in regional contexts to help understand the complex interplay between virus phenotypes, host characteristics, and key epidemiological determinants of transmission that drive FMDV evolution in endemic settings.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Asia , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease Virus/genetics , Serogroup
3.
BMC Vet Res ; 17(1): 63, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33526020

ABSTRACT

BACKGROUND: Foot-and-mouth disease (FMD) is a highly infectious viral disease, recognised to affect animals in the order Artiodactyla. The disease is rarely fatal in adult animals, however high mortality is associated with neonatal and juvenile infection. CASE PRESENTATION: Five puppies died after being fed lamb carcases, the lambs having died during an outbreak of FMD in Iran. Following a post-mortem examination, cardiac tissue from one of the dead puppies was subjected to virus isolation, antigen ELISA, real-time RT-PCR, sequencing and confocal microscopy to assess the presence and characteristics of any FMD virus. The virological and microscopic examination of the cardiac tissue provided evidence of FMD virus replication in the canine heart. CONCLUSIONS: The data generated in this study demonstrate for the first time that FMD virus can internalise and replicate in dogs and may represent an epidemiologically significant event in FMD transmission, highlighting the dangers of feeding diseased animal carcases to other species. The reporting of this finding may also focus attention on similar disease presentations in dogs in FMD endemic countries allowing a better understanding of the prevalence of such events.


Subject(s)
Dog Diseases/virology , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/virology , Animals , Dog Diseases/epidemiology , Dog Diseases/transmission , Dogs , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/transmission , Heart/virology , Iran/epidemiology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology , Red Meat/virology , Sheep , Virus Replication
4.
Sci Rep ; 10(1): 2243, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042070

ABSTRACT

Small ruminant lentiviruses (SRLVs) are found in sheep in Germany and Iran. SRLVs have been classified into four genotypes: A-C and E. Genotype A has been subdivided into 20 subtypes. Previous studies suggested that, first, the ancestors of genotype A are those SRLVs found in Turkey, second, the evolution of SRLVs is related to the domestication process, and, third, SRLV infection was first observed in sheep in Iceland and the source of that infection was a flock imported from Germany. This study generated, for the first time, partial SRLV sequence data from German and Iranian sheep, enhancing our knowledge of the genetic and evolutionary relationships of SRLVs, and their associations with the domestication process. Based on 54 SRLV sequences from German and Iranian sheep, our results reveal: (1) SRLV subtypes A4, A5, A11, A16 and A21 (new) are found in German sheep and A22 (new) in Iranian sheep. (2) Genotype A has potentially an additional ancestor (A22), found in Iran, Lebanon and Jordan. (3) Subtype A22 is likely an old version of SRLVs. (4) The transmission routes of some SRLVs are compatible with domestication pathways. (5) This study found no evidence of Icelandic subtype A1 in German sheep.


Subject(s)
Lentivirus Infections , Lentivirus/classification , Lentivirus/isolation & purification , Phylogeny , Sheep Diseases , Sheep, Domestic/virology , Animals , Asia , Domestication , Europe , Lentivirus Infections/transmission , Lentivirus Infections/veterinary , Lentivirus Infections/virology , Sheep , Sheep Diseases/transmission , Sheep Diseases/virology
5.
Animals (Basel) ; 9(9)2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31540148

ABSTRACT

Small ruminant lentiviruses (SRLVs) cause maedi-visna disease in sheep and are prevalent in Iran and Germany. The association of the transmembrane protein 154 (TMEM154) variants with SRLV infection has been previously identified by a genome-wide association (GWAS) approach and subsequent analyses, and validated in some US, German, and Turkish sheep flocks. We aimed at evaluating these findings for the first time in Iranian, and in some more German sheep flocks/breeds. Also, we aimed at comparing the SRLV susceptibility in Iranian and German sheep based on the frequency of the TMEM154 E35 allele. About 800 blood samples were collected from 21 Iranian and German sheep flocks/breeds for different purposes: (1) The association of TMEM154 E35K with SRLV infection status was tested in four sheep breeds and found to be significant in Kermani, Merinoland, and Brown Hair. (2) The usefulness of the TMEM154 E35 frequency for predicting SRLV susceptibility was evaluated by regression analysis, combining data from this study and some already published data. Results showed a significant association between E35 frequency and SRLV prevalence. (3) SRLV susceptibility was compared based on E35 frequency in Iranian and German sheep. Altogether, findings of this study provide valuable information on SRLV susceptibility, using TMEM154 E35, in Iranian and German sheep.

6.
Emerg Infect Dis ; 24(6): 1073-1078, 2018 06.
Article in English | MEDLINE | ID: mdl-29774839

ABSTRACT

Phylogenetic analyses of foot-and-mouth disease type A viruses in the Middle East during 2015-2016 identified viruses belonging to the A/ASIA/G-VII lineage, which originated in the Indian subcontinent. Changes in a critical antigenic site within capsid viral protein 1 suggest possible evolutionary pressure caused by an intensive vaccination program.


Subject(s)
Disease Outbreaks , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Amino Acid Sequence , Animals , Capsid Proteins/genetics , Foot-and-Mouth Disease/history , Genetic Variation , History, 21st Century , Middle East/epidemiology , Phylogeny , Sequence Analysis, DNA
7.
J Arthropod Borne Dis ; 9(2): 195-203, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26623431

ABSTRACT

BACKGROUND: Bovine ephemeral fever (BEFV) is an arthropod-borne disease of cattle and water buffaloes. BEFV occurs seasonally in tropical, subtropical and temperate regions of Africa, Asia and Australia. It has been known for the past decades in Iran based on clinical signs but lack of an accurate diagnosis has made the real feature of disease obscured. This is the first scientific report on isolation and identification of the agent in which molecular diagnosis of BEFV was also set up with high sensitivity and specificity. METHODS: The viral agent was successfully isolated through serial passages in brain of suckling mice and cell culture. In addition, the circulating virus during the autumn 2012 in Iran was molecularly characterized based on partial G gene. RESULTS: Alignment of 3 virus sequences from different parts of Iran revealed that they are identical suggesting that the circulating viruses were most likely the same in this period. Phylogenetic analysis of the Iranian sequences with 17 sequences in the GenBank from the world showed that it is identical to the virus circulated in Turkey during the same period suggesting that the virus was circulated in a large geographic region. CONCLUSION: These results offer primary information about BEFV in Iran. To better understanding the epidemiology of the virus, further studies based on seroepidemiology, molecular epidemiology, entomology and meteorology together with finding the model of animal transportation in the region are necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...