Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J Mol Graph Model ; 129: 108732, 2024 06.
Article in English | MEDLINE | ID: mdl-38412813

ABSTRACT

Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aß) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aß species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aß(1-42) peptide. The results highlighted that anthocyanidins effectively inhibited the conformational transitions of helices into beta-sheet (ß-sheet) conformation within Aß(1-42) peptide by two different mechanisms: 1) the obstruction of two terminals from coming into contact due to the binding of anthocyanidins with residues of N- and second hydrophobic core (SHC)-C-terminals, and 2) the prevention of the folding process due to the binding of anthocyanidin with the central polar (Asp23 and Lys28) and native helix (Asp23, Lys28, and Leu34) residues. These new findings on the inhibition of ß-sheet formation by targeting both N- and SHC-C-terminals, and the long-established target, D23-K28 salt bridge residues, not with the conventional central hydrophobic core (CHC) as reported in the literature, might aid in designing more potent inhibitors for AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Anthocyanins/pharmacology , Molecular Dynamics Simulation , Molecular Docking Simulation , Peptide Fragments/chemistry , Alzheimer Disease/metabolism
2.
Article in English | MEDLINE | ID: mdl-38109287

ABSTRACT

Agrichemical adjuvants that combine a highly selective, efficient, and active mode of operation are critically needed to realize a more sustainable approach to their usage. Herein, we report the synthesis and full characterization of two new metal-organic frameworks (MOFs), termed UPMOF-1 and UPMOF-2, that were constructed from eco-friendly Ca2+ ions and naturally occurring, low-molecular weight plant acids, l-malic and d-tartaric acid, respectively. Upon structural elucidation of both MOFs, a widely used fungicide, hexaconazole (Hex), was loaded on the structures, reaching binding affinities of -5.0 and -3.5 kcal mol-1 and loading capacities of 63% and 62% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively, as a result of the formation of stable host-guest interactions. Given the framework chemistry of the MOFs and their predisposition to disassembly under relevant agricultural conditions, the sustained release kinetics were determined to show nearly quantitative release (98% and 95% for Hex@UPMOF-1 and Hex@UPMOF-2, respectively) after >500 h, a release profile drastically different than the control (>80% release in 24 h), from which the high efficiency of these new systems was established. To confirm their high selectivity and activity, in vitro and in vivo studies were performed to illustrate the abilities of Hex@UPMOF-1 and Hex@UPMOF-2 to combat the known aggressive pathogen Ganoderma boninense that causes basal stem rot disease in oil palm. Accordingly, at an extremely low concentration of 0.05 µg mL-1, both Hex@UPMOF-1 and Hex@UPMOF-2 were demonstrated to completely inhibit (100%) G. boninense growth, and during a 26 week in vivo nursery trial, the progression of basal stem rot infection was completely halted upon treatment with Hex@UPMOF-1 and Hex@UPMOF-2 and seedling growth was accelerated given the additional nutrients supplied via the disassembly of the MOFs. This study represents a significant step forward in the design of adjuvants to support the environmentally responsible use of agrichemical crop protection.

3.
Electron. j. biotechnol ; 8(3)Dec. 2005. graf
Article in English | LILACS | ID: lil-448795

ABSTRACT

High performance enzymatic synthesis of oleyl oleate, a liquid wax ester was carried out by lipase-catalysed esterification of oleic acid and oleyl alcohol. Various reaction parameters were optimised to obtain high yield of oleyl oleate. The optimum condition to produce oleyl oleate was reaction time; 5 min, organic solvents of log P is greater than or equal to 3.5, temperature; 40-50 ºC, amount of enzyme; 0.2-0.4 g and molar ratio of oleyl alcohol to oleic acid; 2:1. The operational stability of enzyme was maintained at >90 percent yield up to 9 cycles. Analysis of the yield of the product showed that at optimum conditions, >95 percent liquid wax esters were produced.


Subject(s)
Oleic Acids/biosynthesis , Candida/enzymology , Lipase/metabolism , Oleic Acids/chemistry , Esterification , Enzymes, Immobilized/metabolism , Esters/metabolism , Lipase/chemistry , Solvents , Substrate Specificity , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL