Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(19): 6884-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856841

ABSTRACT

To examine the long-term infectivity of human norovirus in water, 13 study subjects were challenged at different time points with groundwater spiked with the prototype human norovirus, Norwalk virus. Norwalk virus spiked in groundwater remained infectious after storage at room temperature in the dark for 61 days (the last time point tested). The Norwalk virus-seeded groundwater was stored for 1,266 days and analyzed, after RNase treatment, by reverse transcription-quantitative PCR (RT-qPCR) to detect Norwalk virus RNA contained within intact capsids. Norwalk virus RNA within intact capsids was detected in groundwater for 1,266 days, with no significant log(10) reduction throughout 427 days and a significant 1.10-log(10) reduction by day 1266. Purified Norwalk virus RNA (extracted from Norwalk virus virions) persisted for 14 days in groundwater, tap water, and reagent-grade water. This study demonstrates that Norwalk virus in groundwater can remain detectable for over 3 years and can remain infectious for at least 61 days. (ClinicalTrials.gov identifier NCT00313404.).


Subject(s)
Microbial Viability , Norwalk virus/physiology , Norwalk virus/pathogenicity , Water Microbiology , Caliciviridae Infections/virology , Darkness , Human Experimentation , Humans , Norwalk virus/isolation & purification , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
2.
Appl Environ Microbiol ; 77(15): 5476-82, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21705552

ABSTRACT

Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.


Subject(s)
Food Handling/methods , Norovirus/isolation & purification , Norovirus/pathogenicity , Ostreidae/virology , Shellfish/virology , Adolescent , Adult , Animals , Double-Blind Method , Feces/virology , Female , Food Industry , Food Microbiology , Humans , Hydrostatic Pressure , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...