Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500709

ABSTRACT

The physical properties, such as the fibre dimension and crystallinity, of cellulose nanofibre (CNF) are significant to its functional reinforcement ability in composites. This study used supercritical carbon dioxide as a fibre bundle defibrillation pretreatment for the isolation of CNF from bamboo, in order to enhance its physical properties. The isolated CNF was characterised through zeta potential, TEM, XRD, and FT-IR analysis. Commercial CNF was used as a reference to evaluate the effectiveness of the method. The physical, mechanical, thermal, and wettability properties of the bamboo and commercial CNF-reinforced PLA/chitin were also analysed. The TEM and FT-IR results showed the successful isolation of CNF from bamboo using this method, with good colloidal stability shown by the zeta potential results. The properties of the isolated bamboo CNF were similar to the commercial type. However, the fibre diameter distribution and the crystallinity index significantly differed between the bamboo and the commercial CNF. The bamboo CNF had a smaller fibre size and a higher crystallinity index than the commercial CNF. The results from the CNF-reinforced biocomposite showed that the physical, mechanical, thermal, and wettability properties were significantly different due to the variations in their fibre sizes and crystallinity indices. The properties of bamboo CNF biocomposites were significantly better than those of commercial CNF biocomposites. This indicates that the physical properties (fibre size and crystallinity) of an isolated CNF significantly affect its reinforcement ability in biocomposites. The physical properties of isolated CNFs are partly dependent on their source and production method, among other factors. These composites can be used for various industrial applications, including packaging.


Subject(s)
Carbon Dioxide/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Biopolymers/chemistry , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Polymers (Basel) ; 13(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805242

ABSTRACT

The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose's crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.

3.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924692

ABSTRACT

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


Subject(s)
Biopolymers/chemistry , Cellulose/chemistry , Silanes/chemistry , Hibiscus/chemistry , Nanocomposites/chemistry , Seaweed/metabolism , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL