Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Clin Neuropsychol ; : 1-14, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692856

ABSTRACT

Objective: Gulf War Illness (GWI) is a debilitating multisymptom condition that affects nearly a third of 1990-91 Gulf War (GW) veterans. Symptoms include pain, fatigue, gastrointestinal issues, and cognitive decrements. Our work has shown that GWI rates and potential causes for symptoms vary between men and women veterans. Studies have documented neuropsychological and neuroimaging findings mostly in men or combined sex datasets. Data are lacking for women veterans due to lack of power and repositories of women veteran samples. Methods: We characterized GW women veterans in terms of demographics, exposures, neuropsychological and neuroimaging outcomes from the newly collated Boston, Biorepository and Integrative Network (BBRAIN) for GWI. Results: BBRAIN women veterans are highly educated with an average age of 54 years. 81% met GWI criteria, 25% met criteria for current PTSD, 78% were white, and 81% served in the Army. Exposure to combined acetylcholinesterase inhibitors (AChEi) including skin pesticides, fogs/sprays and/or pyridostigmine bromide (PB) anti-nerve gas pill exposure resulted in slower processing speed on attentional tasks and a trend for executive impairment compared with non-exposed women. Brain imaging outcomes showed lower gray matter volumes and smaller caudate in exposed women. Conclusions: Although subtle and limited findings were present in this group of women veterans, it suggests that continued follow-up of GW women veterans is warranted. Future research should continue to evaluate differences between men and women in GW veteran samples. The BBRAIN women sub-repository is recruiting and these data are available to the research community for studies of women veterans.

2.
Neurol Res ; 46(3): 253-260, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095353

ABSTRACT

OBJECTIVES: It has been shown that peripheral measures of brain-derived neurotrophic factor (BNDF), an important neurotrophin instrumental to the biology of learning, may contribute to predicting cognitive decline. However, the two primary forms of BDNF, mature (mBDNF) and pro (proBDNF), and how they contribute to cognition longitudinally has not been well studied. METHODS: Eighty-two older adults (average age 72.2 ± 6.4 years) provided blood samples at two time points separated on average by 4.2 years while participating in an annual memory screening that included the MoCA (Montreal Cognitive Assessment) and GDS (Geriatric Depression Scale). Both mBDNF and proBDNF from serum were quantified at each time point. Whole blood samples were genotyped for APOE and BDNF Val66Met. RESULTS: Using logistic regression analysis controlling for age, sex, baseline MoCA score, APOE, and BDNF, higher baseline mBDNF was associated with subjects whose screening score was near maximum or maximum (as defined by MoCA score of 29 or 30) at the second collection visit. APOE was a significant contributing factor; however, BDNF Val66Met was not. Using a similar logistic regression analysis, baseline proBDNF was not found to be associated with future cognition. DISCUSSION: This study further supports that mBDNF measured in the serum of older adults may reflect a protective role while proBDNF requires further investigation.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Humans , Aged , Brain-Derived Neurotrophic Factor/genetics , Independent Living , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Apolipoproteins E
3.
Neurotrauma Rep ; 4(1): 643-654, 2023.
Article in English | MEDLINE | ID: mdl-37786567

ABSTRACT

Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.

4.
J Clin Transl Res ; 9(1): 50-58, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-37032999

ABSTRACT

Background and Aim: Bacopa monnieri is an Ayurvedic herb that has been used for multiple conditions, most notably to augment cognition, particularly memory and attention. Multiple mechanisms, including raising brain-derived neurotrophic factor (BDNF), have been proposed and investigated in animal models that require translational studies in humans. Methods: Bacopa was administered in an open-labeled study to cognitively healthy controls over a 3-month period. Cognition and mood were assessed using the Montreal Cognitive Assessment (MoCA) and geriatric depression scale (GDS) at the baseline and 3-month visit. Laboratories were assessed for safety and serum levels of mature (mBDNF) and proBDNF were quantified. In a subset of subjects, intracellular signaling processes were assessed using western blot analysis. Results: Bacopa was provided to 35 subjects and was well-tolerated except for 4 (11%) subjects who early terminated due to known, reversible, and gastrointestinal side effects (i.e., nausea, diarrhea). Over the 3 months, the GDS and the total MoCA did not significantly change; however, the delayed-recall subscale significantly improved (baseline: 3.8 ± 1.2, 3-months: 4.3 ± 0.9; P = 0.032). Serum mBDNF and proBDNF levels did not significantly change. Cyclic AMP response element-binding protein (CREB) phosphorylation significantly increased (P = 0.028) and p65 nuclear factor kappa B (NF-κB) phosphorylation significantly decreased (P = 0.030). Conclusion: These results suggest that Bacopa may exert an anti-inflammatory effect through NF-κB and improve intracellular signaling processes associated with synaptogenesis (CREB). The future placebo-controlled studies are recommended. Relevance for Patients: B. monnieri will require larger, blinded trials to better understand potential mechanisms, interactions, and utilization.

5.
J Lipid Res ; 64(6): 100354, 2023 06.
Article in English | MEDLINE | ID: mdl-36958720

ABSTRACT

Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.


Subject(s)
Apolipoprotein E4 , Docosahexaenoic Acids , Animals , Mice , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Diet , Dietary Supplements , Docosahexaenoic Acids/metabolism , Entorhinal Cortex/metabolism , Fatty Acids, Unsaturated
6.
Curr Res Transl Med ; 71(1): 103362, 2023.
Article in English | MEDLINE | ID: mdl-36436355

ABSTRACT

BACKGROUND: The apolipoprotein E (APOE) ε4 allele, involved in fatty acid (FA) metabolism, is a major genetic risk factor for Alzheimer's disease (AD). This study examined the influence of APOE genotypes on blood and brain markers of the L-carnitine system, necessary for fatty acid oxidation (FAO), and their collective influence on the clinical and pathological outcomes of AD. METHODS: L-carnitine, its metabolites γ-butyrobetaine (GBB) and trimethylamine-n-oxide (TMAO), and its esters (acylcarnitines) were analyzed in blood from predominantly White community/clinic-based individuals (n = 372) and in plasma and brain from the Religious Order Study (ROS) (n = 79) using liquid chromatography tandem mass spectrometry (LC-MS/MS). FINDINGS: Relative to total blood acylcarnitines, levels of short chain acylcarnitines (SCAs) were higher whereas long chain acylcarnitines (LCAs) were lower in AD, which was observed pre-clinically in APOE ε4s. Plasma medium chain acylcarnitines (MCAs) were higher amongst cognitively healthy APOE ε2 carriers relative to other genotypes. Compared to their respective controls, elevated TMAO and lower L-carnitine and GBB were associated with AD clinical diagnosis and these differences were detected preclinically among APOE ε4 carriers. Plasma and brain GBB, TMAO, and acylcarnitines were also associated with post-mortem brain amyloid, tau, and cerebrovascular pathologies. INTERPRETATION: Alterations in blood L-carnitine, GBB, TMAO, and acylcarnitines occur early in clinical AD progression and are influenced by APOE genotype. These changes correlate with post-mortem brain AD and cerebrovascular pathologies. Additional studies are required to better understand the role of the FAO disturbances in AD.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Carnitine/metabolism , Apolipoproteins E/genetics , Brain , Fatty Acids
7.
Alzheimers Dement ; 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36479795

ABSTRACT

Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.

8.
Acta Neuropathol Commun ; 10(1): 147, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36258255

ABSTRACT

Chemical and pharmaceutical exposures have been associated with the development of Gulf War Illness (GWI), but how these factors interact with the pathophysiology of traumatic brain injury (TBI) remains an area of study that has received little attention thus far. We studied the effects of pyridostigmine bromide (an anti-nerve agent) and permethrin (a pesticide) exposure in a mouse model of repetitive mild TBI (r-mTBI), with 5 impacts over a 9-day period, followed by Gulf War (GW) toxicant exposure for 10 days beginning 30 days after the last head injury. We then assessed the chronic behavioral and pathological sequelae 5 months after GW agent exposure. We observed that r-mTBI and GWI cumulatively affect the spatial memory of mice in the Barnes maze and result in a shift of search strategies employed by r-mTBI/GW exposed mice. GW exposure also produced anxiety-like behavior in sham animals, but r-mTBI produced disinhibition in both the vehicle and GW treated mice. Pathologically, GW exposure worsened r-mTBI dependent axonal degeneration and neuroinflammation, increased oligodendrocyte cell counts, and increased r-mTBI dependent phosphorylated tau, which was found to colocalize with oligodendrocytes in the corpus callosum. These results suggest that GW exposures may worsen TBI-related deficits. Veterans with a history of both GW chemical exposures as well as TBI may be at higher risk for worse symptoms and outcomes. Subsequent exposure to various toxic substances can influence the chronic nature of mTBI and should be considered as an etiological factor influencing mTBI recovery.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Pesticides , Mice , Animals , Gulf War , Brain Concussion/complications , Pyridostigmine Bromide/toxicity , Permethrin/toxicity , Disease Models, Animal , Pharmaceutical Preparations
9.
Mult Scler Relat Disord ; 63: 103818, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523060

ABSTRACT

BACKGROUND: There is limited data regarding adaptive immunity in older persons with Multiple Sclerosis (MS). OBJECTIVE: The aim of the present study was to quantify adaptive immune cells in younger (age less than 50) and older (age greater than 50) with MS in the context of clinical parameters (EDSS, 25-foot walk, SDMT). Subjects were either Untreated (no MS medications in 6 months), taking Injectables (interferons or glatiramer acetate), or Other approved MS treatments. RESULTS: A total of 72 subjects were enrolled (30 younger and 42 older). Older MS patients that were Untreated or taking Injectables had lower CD8 cell counts. Older MS patients demonstrated increased levels of CD4+CD25hi cells and inflammatory serum cytokines (TNF-α, IL-8). There was suggestion that MS treatments modulated IL-10. Cognition as assessed by SDMT was associated with disease duration and IL-10. CONCLUSION: Components of adaptive immunity are influenced by aging in MS which may also impact aspects of cognition as measured by SDMT.


Subject(s)
Multiple Sclerosis , Aging , Cytokines , Glatiramer Acetate/therapeutic use , Humans , Interleukin-10 , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/drug therapy
10.
J Transl Med ; 20(1): 73, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35123492

ABSTRACT

BACKGROUND: Nearly 250,000 veterans from the 1990-1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. METHODS: Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. RESULTS: An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. CONCLUSION: Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder.


Subject(s)
Persian Gulf Syndrome , Veterans , Biomarkers , Female , Gulf War , Humans , Male , Persian Gulf Syndrome/diagnosis , Persian Gulf Syndrome/metabolism , Phospholipids
11.
Life Sci ; 290: 119818, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34352259

ABSTRACT

AIMS: The Gulf War Illness programs (GWI) of the United States Department of Veteran Affairs and the Department of Defense Congressionally Directed Medical Research Program collaborated with experts to develop Common Data Elements (CDEs) to standardize and systematically collect, analyze, and share data across the (GWI) research community. MAIN METHODS: A collective working group of GWI advocates, Veterans, clinicians, and researchers convened to provide consensus on instruments, case report forms, and guidelines for GWI research. A similar initiative, supported by the National Institute of Neurologic Disorders and Stroke (NINDS) was completed for a comparative illness, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), and provided the foundation for this undertaking. The GWI working group divided into two sub-groups (symptoms and systems assessment). Both groups reviewed the applicability of instruments and forms recommended by the NINDS ME/CFS CDE to GWI research within specific domains and selected assessments of deployment exposures. The GWI CDE recommendations were finalized in March 2018 after soliciting public comments. KEY FINDINGS: GWI CDE recommendations are organized in 12 domains that include instruments, case report forms, and guidelines. Recommendations were categorized as core (essential), supplemental-highly recommended (essential for specified conditions, study types, or designs), supplemental (commonly collected, but not required), and exploratory (reasonable to use, but require further validation). Recommendations will continually be updated as GWI research progresses. SIGNIFICANCE: The GWI CDEs reflect the consensus recommendations of GWI research community stakeholders and will allow studies to standardize data collection, enhance data quality, and facilitate data sharing.


Subject(s)
Common Data Elements/standards , Persian Gulf Syndrome , Biomedical Research , Humans , Information Dissemination , National Institute of Neurological Disorders and Stroke (U.S.) , Persian Gulf Syndrome/etiology , United States , United States Department of Veterans Affairs , Veterans Health
12.
Front Aging Neurosci ; 14: 1059017, 2022.
Article in English | MEDLINE | ID: mdl-36688151

ABSTRACT

With age the apolipoprotein E (APOE) E4 allele (involved in lipid homeostasis) is associated with perturbation of bioenergetics pathways in Alzheimer's disease (AD). We therefore hypothesized that in aging mice APOE genotype would affect the L-carnitine system (central to lipid bioenergetics), in the brain and in the periphery. Using liquid chromatography-mass spectrometry, levels of L-carnitine and associated metabolites: γ-butyrobetaine (GBB), crotonobetaine, as well as acylcarnitines, were evaluated at 10-, 25-, and 50-weeks, in the brain and the periphery, in a targeted replacement mouse model of human APOE (APOE-TR). Aged APOE-TR mice were also orally administered 125 mg/kg of L-carnitine daily for 7 days followed by evaluation of brain, liver, and plasma L-carnitine system metabolites. Compared to E4-TR, an age-dependent increase among E2- and E3-TR mice was detected for medium- and long-chain acylcarnitines (MCA and LCA, respectively) within the cerebrovasculature and brain parenchyma. While following L-carnitine oral challenge, E4-TR mice had higher increases in the L-carnitine metabolites, GBB and crotonobetaine in the brain and a reduction of plasma to brain total acylcarnitine ratios compared to other genotypes. These studies suggest that with aging, the presence of the E4 allele may contribute to alterations in the L-carnitine bioenergetic system and to the generation of L-carnitine metabolites that could have detrimental effects on the vascular system. Collectively the E4 allele and aging may therefore contribute to AD pathogenesis through aging-related lipid bioenergetics as well as cerebrovascular dysfunctions.

13.
J Transl Med ; 19(1): 370, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34454515

ABSTRACT

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness which disproportionally affects females. This illness is associated with immune and metabolic perturbations that may be influenced by lipid metabolism. We therefore hypothesized that plasma lipids from ME/CFS patients will provide a unique biomarker signature of disturbances in immune, inflammation and metabolic processes associated with ME/CFS. METHODS: Lipidomic analyses were performed on plasma from a cohort of 50 ME/CFS patients and 50 controls (50% males and similar age and ethnicity per group). Analyses were conducted with nano-flow liquid chromatography (nLC) and high-performance liquid chromatography (HPLC) systems coupled with a high mass accuracy ORBITRAP mass spectrometer, allowing detection of plasma lipid concentration ranges over three orders of magnitude. We examined plasma phospholipids (PL), neutral lipids (NL) and bioactive lipids in ME/CFS patients and controls and examined the influence of sex on the relationship between lipids and ME/CFS diagnosis. RESULTS: Among females, levels of total phosphatidylethanolamine (PE), omega-6 arachidonic acid-containing PE, and total hexosylceramides (HexCer) were significantly decreased in ME/CFS compared to controls. In males, levels of total HexCer, monounsaturated PE, phosphatidylinositol (PI), and saturated triglycerides (TG) were increased in ME/CFS patients compared to controls. Additionally, omega-6 linoleic acid-derived oxylipins were significantly increased in male ME/CFS patients versus male controls. Principal component analysis (PCA) identified three major components containing mostly PC and a few PE, PI and SM species-all of which were negatively associated with headache and fatigue severity, irrespective of sex. Correlations of oxylipins, ethanolamides and ME/CFS symptom severity showed that lower concentrations of these lipids corresponded with an increase in the severity of headaches, fatigue and cognitive difficulties and that this association was influenced by sex. CONCLUSION: The observed sex-specific pattern of dysregulated PL, NL, HexCer and oxylipins in ME/CFS patients suggests a possible role of these lipids in promoting immune dysfunction and inflammation which may be among the underlying factors driving the clinical presentation of fatigue, chronic pain, and cognitive difficulties in ill patients. Further evaluation of lipid metabolism pathways is warranted to better understand ME/CFS pathogenesis.


Subject(s)
Fatigue Syndrome, Chronic , Biomarkers , Cognition , Female , Humans , Inflammation , Male , Pain
14.
Neurosci Insights ; 16: 26331055211018458, 2021.
Article in English | MEDLINE | ID: mdl-34104887

ABSTRACT

Gulf War Illness is a multisymptomatic condition which affects 30% of veterans from the 1991 Gulf War. While there is evidence for a role of peripheral cellular and humoral adaptive immune responses in Gulf War Illness, a potential role of the adaptive immune system in the central nervous system pathology of this condition remains unknown. Furthermore, many of the clinical features of Gulf War Illness resembles those of autoimmune diseases, but the biological processes are likely different as the etiology of Gulf War Illness is linked to hazardous chemical exposures specific to the Gulf War theatre. This review discusses Gulf War chemical-induced maladaptive immune responses and a potential role of cellular and humoral immune responses that may be relevant to the central nervous system symptoms and pathology of Gulf War Illness. The discussion may stimulate investigations into adaptive immunity for developing novel therapies for Gulf War Illness.

15.
BMC Neurosci ; 22(1): 39, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034683

ABSTRACT

BACKGROUND: Matrix metallopeptidase 9 (MMP9) has been implicated in a variety of neurological disorders, including Alzheimer's disease (AD), where MMP9 levels are elevated in the brain and cerebrovasculature. Previously our group demonstrated apolipoprotein E4 (apoE4) was less efficient in regulating MMP9 activity in the brain than other apoE isoforms, and that MMP9 inhibition facilitated beta-amyloid (Aß) elimination across the blood-brain barrier (BBB) METHODS: In the current studies, we evaluated the impact of MMP9 modulation on Aß disposition and neurobehavior in AD using two approaches, (1) pharmacological inhibition of MMP9 with SB-3CT in apoE4 x AD (E4FAD) mice, and (2) gene deletion of MMP9 in AD mice (MMP9KO/5xFAD) RESULTS: Treatment with the MMP9 inhibitor SB-3CT in E4FAD mice led to reduced anxiety compared to placebo using the elevated plus maze. Deletion of the MMP9 gene in 5xFAD mice also reduced anxiety using the open field test, in addition to improving sociability and social recognition memory, particularly in male mice, as assessed through the three-chamber task, indicating certain behavioral alterations in AD may be mediated by MMP9. However, neither pharmacological inhibition of MMP9 or gene deletion of MMP9 affected spatial learning or memory in the AD animals, as determined through the radial arm water maze. Moreover, the effect of MMP9 modulation on AD neurobehavior was not due to changes in Aß disposition, as both brain and plasma Aß levels were unchanged in the SB-3CT-treated E4FAD animals and MMP9KO/AD mice compared to their respective controls. CONCLUSIONS: In total, while MMP9 inhibition did improve specific neurobehavioral deficits associated with AD, such as anxiety and social recognition memory, modulation of MMP9 did not alter spatial learning and memory or Aß tissue levels in AD animals. While targeting MMP9 may represent a therapeutic strategy to mitigate aspects of neurobehavioral decline in AD, further work is necessary to understand the nature of the relationship between MMP9 activity and neurological dysfunction.


Subject(s)
Alzheimer Disease/metabolism , Anxiety/metabolism , Matrix Metalloproteinase 9/deficiency , Social Interaction , Spatial Learning/physiology , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Amyloid beta-Peptides/genetics , Animals , Anxiety/drug therapy , Anxiety/genetics , Anxiety/psychology , Brain/metabolism , Female , Heterocyclic Compounds, 1-Ring/pharmacology , Heterocyclic Compounds, 1-Ring/therapeutic use , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/physiology , Presenilin-1/genetics , Social Interaction/drug effects , Spatial Learning/drug effects , Sulfones/pharmacology , Sulfones/therapeutic use
16.
Neurobiol Aging ; 95: 56-68, 2020 11.
Article in English | MEDLINE | ID: mdl-32758917

ABSTRACT

Apolipoprotein E (APOE) has been shown to influence amyloid-ß (Aß) clearance from the brain in an isoform-specific manner. Our prior work showed that Aß transit across the blood-brain-barrier was reduced by apoE4, compared to other apoE isoforms, due to elevated lipoprotein receptor shedding in brain endothelia. Recently, we demonstrated that matrix metallopeptidase 9 (MMP-9) induces lipoprotein receptor proteolysis in an apoE isoform-dependent manner, which impacts Aß elimination from the brain. The current studies interrogated the relationship between apoE and MMP-9 and found that apoE impacted proMMP-9 cellular secretion from brain endothelia (apoE2 < apoE3 = apoE4). In a cell-free assay, apoE dose-dependently reduced MMP-9 activity, with apoE4 showing a significantly weaker ability to inhibit MMP-9 function than apoE2 or apoE3. Finally, we observed elevated MMP-9 expression and activity in the cerebrovasculature of both human and animal AD brain specimens with an APOE4 genotype. Collectively, these findings suggest a role for apoE in regulating MMP-9 disposition and may describe the effect of apoE4 on Aß pathology in the AD brain.


Subject(s)
Alzheimer Disease/etiology , Apolipoproteins E/physiology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/pharmacology , Brain/metabolism , Dose-Response Relationship, Drug , Endothelium/metabolism , Genotype , Humans , Matrix Metalloproteinase Inhibitors , Protein Isoforms/physiology , Proteolysis , Receptors, Lipoprotein/metabolism
17.
Neurotoxicology ; 79: 84-94, 2020 07.
Article in English | MEDLINE | ID: mdl-32343995

ABSTRACT

Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War (GW), who suffer from symptoms that reflect ongoing mitochondria dysfunction. Brain mitochondria bioenergetics dysfunction in GWI animal models corresponds with astroglia activation and neuroinflammation. In a pilot study of GW veterans (n = 43), we observed that blood nicotinamide adenine dinucleotide (NAD) and sirtuin 1 (Sirt1) protein levels were decreased in the blood of veterans with GWI compared to healthy GW veterans. Since nicotinamide riboside (NR)-mediated targeting of Sirt1 is shown to improve mitochondria function, we tested whether NR can restore brain bioenergetics and reduce neuroinflammation in a GWI mouse model. We administered a mouse diet supplemented with NR at 100µg/kg daily for 2-months to GWI and control mice (n = 27). During treatment, mice were assessed for fatigue-type behavior using the Forced Swim Test (FST), followed by euthanasia for biochemistry and immunohistochemistry analyses. Fatigue-type behavior was elevated in GWI mice compared to control mice and lower in GWI mice treated with NR compared to untreated GWI mice. Levels of plasma NAD and brain Sirt1 were low in untreated GWI mice, while GWI mice treated with NR had higher levels, similar to those of control mice. Deacetylation of the nuclear-factor κB (NFκB) p65 subunit and peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) was an increase in the brains of NR-treated GWI mice. This corresponded with a decrease in pro-inflammatory cytokines and lipid peroxidation and an increase in markers of mitochondrial bioenergetics in the brains of GWI mice. These findings suggest that targeting NR mediated Sirt1 activation restores brain bioenergetics and reduces inflammation in GWI mice. Further evaluation of NR in GWI is warranted to determine its potential efficacy in treating GWI.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Energy Metabolism/drug effects , Niacinamide/analogs & derivatives , Persian Gulf Syndrome/drug therapy , Pyridinium Compounds/pharmacology , Sirtuin 1/metabolism , Aged , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Behavior, Animal/drug effects , Brain/enzymology , Brain/physiopathology , Case-Control Studies , Disease Models, Animal , Fatigue/drug therapy , Fatigue/enzymology , Fatigue/physiopathology , Fatigue/psychology , Female , Gulf War , Humans , Male , Mice, Inbred C57BL , Middle Aged , Mitochondria/drug effects , Mitochondria/enzymology , NAD/blood , Niacinamide/pharmacology , Organelle Biogenesis , Oxidative Stress/drug effects , Persian Gulf Syndrome/enzymology , Persian Gulf Syndrome/physiopathology , Persian Gulf Syndrome/psychology , Pilot Projects , Sirtuin 1/blood , Veterans Health
18.
Front Neurol ; 11: 149, 2020.
Article in English | MEDLINE | ID: mdl-32210906

ABSTRACT

We examined the effects of a dihydropyridine calcium channel blocker nilvadipine with anti-inflammatory properties on cognition and cerebrospinal fluid (CSF) biomarkers by baseline Alzheimer's disease (AD) severity. Exploratory analyses were performed on the dataset (n = 497) of a phase III randomized placebo-controlled trial to examine the response to nilvadipine in AD subjects stratified by baseline AD severity into very mild (MMSE ≥ 25), mild (MMSE 20-24) and moderate AD (MMSE < 20). The outcome measures included total and subscale scores of the Alzheimer's Disease Assessment Scale Cognitive 12 (ADAS-Cog 12), the Clinical Dementia Rating Scale sum of boxes (CDR-sb) and the AD composite score (ADCOMS). Cerebrospinal fluid biomarkers Aß38, Aß40, Aß42, neurofilament light chain (NFL), neurogranin, YKL-40, total tau and P181 tau (ptau) were measured in a subset of samples (n = 55). Regression analyses were adjusted for confounders to specifically examine the influence of nilvadipine and baseline AD severity on cognitive outcomes over 78-weeks. Compared to their respective placebo-controls, nilvadipine-treated, very mild AD subjects showed less decline, whereas moderate AD subjects showed a greater cognitive decline on the ADAS-Cog 12 test and the ADCOMS. A lower decline was observed after nilvadipine treatment for a composite memory trait in very mild AD subjects and a composite language trait in mild AD subjects. Cerebrospinal fluid Aß42/Aß40 ratios were increased in mild AD and decreased in moderate AD patients treated with nilvadipine, compared to their respective controls. Among moderate AD subjects, levels of ptau, total tau, neurogranin and YKL-40 increased in subjects treated with nilvadipine compared to placebo. These studies suggest that baseline AD severity influenced the treatment outcome in the NILVAD trial and that future clinical trials of nilvadipine should be restricted to mild and very mild AD patients. Trial Registration: NCT02017340 Registered 20 December 2013, https://clinicaltrials.gov/ct2/show/NCT02017340 EUDRACT Reference Number 2012-002764-27 Registered 04 February 2013, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2012-002764-27.

19.
Front Physiol ; 11: 12, 2020.
Article in English | MEDLINE | ID: mdl-32082186

ABSTRACT

The differential diagnosis between mild Traumatic Brain Injury (mTBI) sequelae and Post-Traumatic Stress Disorder (PTSD) is challenging due to their symptomatic overlap and co-morbidity. As such, there is a need to develop biomarkers which can help with differential diagnosis of these two conditions. Studies from our group and others suggest that blood and brain lipids are chronically altered in both mTBI and PTSD. Therefore, examining blood lipids presents a minimally invasive and cost-effective approach to identify promising biomarkers of these conditions. Using liquid chromatography-mass spectrometry (LC-MS) we examined hundreds of lipid species in the blood of healthy active duty soldiers (n = 52) and soldiers with mTBI (n = 21), PTSD (n = 34) as well as co-morbid mTBI and PTSD (n = 13) to test whether lipid levels were differentially altered with each. We also examined if the apolipoprotein E (APOE) ε4 allele can affect the association between diagnosis and peripheral lipid levels in this cohort. We show that several lipid classes are altered with diagnosis and that there is an interaction between diagnosis and the ε4 carrier status on these lipids. Indeed, total lipid levels as well as both the degree of unsaturation and chain lengths are differentially altered with diagnosis and ε4 status, specifically long chain unsaturated triglycerides (TG) and both saturated and mono-unsaturated diglycerides (DG). Additionally, an examination of lipid species reveals distinct profiles in each diagnostic group stratified by ε4 status, mainly in TG, saturated DG species and polyunsaturated phosphatidylserines. In summary, we show that peripheral lipids are promising biomarker candidates to assist with the differential diagnosis of mTBI and PTSD. Further, ε4 carrier status alone and in interaction with diagnosis has a strong influence on peripheral lipid levels. Therefore, examining ε4 status along with peripheral lipid levels could help with differential diagnosis of mTBI and PTSD.

20.
Neuromolecular Med ; 22(2): 331, 2020 06.
Article in English | MEDLINE | ID: mdl-32078110

ABSTRACT

The original version of this article unfortunately contained a mistake. Gary S. Laco should not be listed as an author in the author group.

SELECTION OF CITATIONS
SEARCH DETAIL
...