Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 9(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34829971

ABSTRACT

Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.

2.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33160998

ABSTRACT

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Subject(s)
Cell Differentiation , Embryoid Bodies/cytology , Gene Expression Regulation, Developmental , Germ Cells/cytology , Induced Pluripotent Stem Cells/cytology , Meiosis , Cells, Cultured , Embryoid Bodies/metabolism , Female , Gene Expression Profiling , Germ Cells/metabolism , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/metabolism , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL