Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 302: 119055, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35227849

ABSTRACT

To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 µg m-3) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 µg m-3). Organic carbon (OC: 11.9 ± 7.0 µg m-3) and elemental carbon (EC: 5.1 ± 2.2 µg m-3) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca2+ was observed (11.9 ± 9.2 µg m-3), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m-3), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , Environmental Monitoring , Particulate Matter/analysis , Seasons , Tajikistan
2.
Chemosphere ; 286(Pt 2): 131700, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34333187

ABSTRACT

Fecal coliform (FC) in river water is one of the threats to human health. To explore the pollution status of FC in rivers of Kyrgyzstan, a mountainous country with traditional agro-pastoral economy, 184 water samples from the rivers of Kyrgyzstan in low and high river flow period were analyzed. Spatial autocorrelation and classical statistical methods were used to analyze the spatiotemporal distribution and driving factors of FC. The results showed that the surface water quality of Kyrgyz rivers was good, and the concentration range of FC was 0-23 MPN/100 mL. Temporally, the maximum FC concentration was 4 MPN/100 mL in low river flow period, while in the period of high river flow, the highest value reached to 23 MPN/100 mL. Spatially, the concentration of FC in high altitude areas was low, while that in the lowland areas was relatively high, which indicated that animal husbandry in high altitude areas contributed little to FC in rivers, and urban domestic sewage and agricultural activities in lowlands were the main pollution sources of FC in rivers. There was no correlation between FC and hardness, electrical conductivity (EC), pH and total organic carbon (TOC) in river water of Kyrgyzstan, and the distribution of FC in high river flow period was mainly driven by population and human modification of terrestrial systems. The results can provide a basis for the prevention and control of surface water FC pollution and related diseases in Kyrgyzstan.


Subject(s)
Environmental Monitoring , Rivers , Humans , Kyrgyzstan , Water Pollution/analysis , Water Quality
3.
Sci Rep ; 10(1): 14972, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917939

ABSTRACT

Water chemistry and the assessment of health risks of potentially toxic elements have important research significance for water resource utilization and human health. However, not enough attention has been paid to the study of surface water environments in many parts of Central Asia. Sixty water samples were collected from the transboundary river basin of Chu-Talas during periods of high and low river flow, and the hydrochemical composition, including major ions and potentially toxic elements (Zn, Pb, Cu, Cr, and As), was used to determine the status of irrigation suitability and risks to human health. The results suggest that major ions in river water throughout the entire basin are mainly affected by water-rock interactions, resulting in the dissolution and weathering of carbonate and silicate rocks. The concentrations of major ions change to some extent with different hydrological periods; however, the hydrochemical type of calcium carbonate remains unchanged. Based on the water-quality assessment, river water in the basin is classified as excellent/good for irrigation. The relationship between potentially toxic elements (Zn, Pb, Cu, Cr, and As) and major ions is basically the same between periods of high and low river flow. There are significant differences between the sources of potentially toxic elements (Zn, Pb, Cu, and As) and major ions; however, Cr may share the same rock source as major ions. The risk assessment revealed low non-carcinogenic and carcinogenic risks for human health; however, the maximum carcinogenic risk for As exceeded the allowable value, which requires further consideration. These results provide a scientific basis for the management of agricultural irrigation uses and also infill existing gaps regarding the hydrochemical composition in the Chu-Talas river basin, Central Asia.

4.
Article in English | MEDLINE | ID: mdl-32429582

ABSTRACT

The water resources of Central Asia play an important role in maintaining the fragile balance of ecosystems and the sustainable development of human society. However, the lack of research on the heavy metals in river waters has a far-reaching influence on public health and the sustainable development in Central Asia. In order to reveal the possible sources of the heavy metals and to assess the associated human health risks, thirty-eight water samples were collected from the rivers of the Issyk-Kul Basin during the period with low river flow (May) and the period with high river flow (July and August), and the hydrochemical compositions and major ions of heavy metals were analyzed. No changes in hydrochemical facies were observed between the two periods and the river water type was calcium bicarbonate. Carbonate dissolution and silicate weathering controlled the variation of cations and anions in river waters from the Issyk-Kul Basin. There were some differences in the sources of heavy metals in water bodies between the two periods. During the period with low river flow, heavy metals (Cr) were closely clustered with major ions, indicating that they were mainly affected by water-rock interactions. During the period with high river flow, all heavy metals studied in this paper had different sources of major ions, and the heavy metals maybe influenced by human activities. From the human health risk assessment, the hazard quotients for all samples were less than 1, reflecting that there was no noncarcinogenic risk in the river waters of the Issyk-Kul Basin during the two sampling periods. However, the water samples with carcinogenic risk of arsenic exceeding the threshold (10-4) accounted for 21.1% of the total, indicating that there were some certain carcinogenic hazards for human health via water drinking with direct oral ingestion. The results are of certain significance for the utilization and protection of water resources in the basin as well as the protection of public health.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Ecosystem , Environmental Health , Environmental Monitoring , Humans , Kyrgyzstan , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...