Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn Dent Sci Rev ; 60: 190-197, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38974884

ABSTRACT

Most reports on duplicate dentures are introduction to fabrication methods or clinical case reports. Only a few studies have verified their clinical effectiveness; hence, evidence to construct useful clinical guidelines for duplicate denture use is lacking. This review aimed to comprehensively investigate reports on duplicate dentures to accumulate evidences that will contribute to the formulation of clinical practice guidelines. Duplicate dentures are effectively used for impression making and bite registration when fabricating new dentures, thereby reducing the number of clinic visits and treatment time. Duplicate denture can also be used as temporary or new dentures. Older people in whom various adaptive abilities have declined, may find it difficult to adjust to new dentures and experience stress, even if the shape is appropriate. Duplicate dentures, which reproduces the shape of old dentures that they are used to, have the advantage of being more familiar to older people and less stressful. When manufacturing duplicate dentures, digital methods such as milling and three-dimensional printing are superior to conventional methods regarding working time and cost. A notable advantage of the digital method is that the denture shape can be saved as digital data, and the denture can be easily duplicated if lost.

2.
Nat Commun ; 15(1): 4946, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862540

ABSTRACT

Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.


Subject(s)
CpG Islands , Cytosine , DNA Methylation , Induced Pluripotent Stem Cells , Point Mutation , Induced Pluripotent Stem Cells/metabolism , Cytosine/metabolism , Animals , Humans , Mice , Cellular Reprogramming/genetics , Retroelements/genetics , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL