Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(17): 4205-10, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27491709

ABSTRACT

Novel compounds based on 1a were synthesized with the focus of obtaining agonists acting upon peripheral BRS-3. To identify potent anti-obesity compounds without adverse effects on the central nervous system (CNS), a carboxylic acid moiety and a labile carboxylic ester with an antedrug functionality were introduced. Through the extensive synthetic exploration and the pharmacokinetic studies of intravenous administration in mice, the ester 2b was selected owing to its most suitable pharmacological profile. In the evaluation of food intake suppression in C57BL/6N mice, 2b showed significant in vivo efficacy and no clear adverse effects on blood pressure change in dogs administered the compound by intravenous infusion.


Subject(s)
Acetates/chemistry , Anti-Obesity Agents/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Imidazoles/chemistry , Receptors, Bombesin/agonists , Acetates/metabolism , Acetates/pharmacology , Animals , Anti-Obesity Agents/metabolism , Anti-Obesity Agents/pharmacology , Blood Pressure/drug effects , Brain/drug effects , Brain/metabolism , Central Nervous System/drug effects , Central Nervous System/metabolism , Dogs , Eating/drug effects , Half-Life , Heart Rate/drug effects , Heterocyclic Compounds, 2-Ring/metabolism , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Injections, Intravenous , Mice , Mice, Inbred C57BL , Receptors, Bombesin/metabolism
2.
J Recept Signal Transduct Res ; 35(5): 485-92, 2015.
Article in English | MEDLINE | ID: mdl-26053506

ABSTRACT

Ovarian cancer G-protein-coupled receptor 1 (OGR1) is a G-protein-coupled receptor (GPCR), which has previously been identified as a receptor for protons. It has been reported in this and previous studies that OGR1 expression was markedly up-regulated during osteoclast differentiation. We predicted the possibility of other molecules activating OGR1 in neutral pH, and that osteoblasts might release OGR1 agonistic molecules and activate OGR1 expressed in osteoclasts such as RANKL. We screened for cell supernatants and organ extracts and discovered OGR1 agonistic activity in ST-2 osteoblastic cell supernatants and pancreatic tissues. Finally, we partially purified and identified essential metals, Fe, Zn, Co, Ni and Mn, as novel OGR1 agonists. These OGR1 agonistic metals induce intracellular Gq-coupled inositol phosphate signals in OGR1-expressing cells and primary osteoclasts through OGR1. We also confirmed that these OGR1 agonistic metals activated OGR1 through the same residues which act with protons. Here, we demonstrate that metals, Fe, Zn, Co, Ni and Mn are the novel OGR1 agonists, which can singly activate OGR1 in neutral pH.


Subject(s)
Metals/chemistry , Metals/metabolism , Osteoblasts/chemistry , Osteoblasts/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line , Cells, Cultured , Mice , Mice, Inbred C57BL
3.
Bioorg Med Chem ; 23(1): 89-104, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25497965

ABSTRACT

Novel compounds based on the lead BRS-3 agonists from our HTS compounds 2a and 2b have been synthesized with the focus on obtaining peripheral BRS-3 agonists. To identify potent anti-obesity compounds without adverse effects on the central nerve system, a labile carboxylic ester with an antedrug functionality was introduced onto the terminal position. Through the extensive synthetic exploration and the pharmacokinetic studies of oral administration in mice, the phenol ester 17c was selected due to the most suitable pharmacological profile. In the evaluation of food intake suppression in B6 mice, 17c showed significant in vivo efficacy and no clear adverse effect on heart rate and blood pressure change in dog iv infusion. Our study paved the way for development of anti-diabetes and obesity drugs with a safer profile.


Subject(s)
Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Azepines/chemistry , Azepines/pharmacology , Receptors, Bombesin/agonists , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacokinetics , Azepines/chemical synthesis , Azepines/pharmacokinetics , Dogs , Drug Evaluation , Humans , Mice , Models, Molecular , Molecular Conformation , Obesity/drug therapy , Obesity/metabolism , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 24(3): 750-5, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24412111

ABSTRACT

The discovery and optimization of a novel series of BRS-3 agonists are described. We explored a potent BRS-3 agonist with low brain penetration to avoid an adverse effect derived from central nervous system exposure. Through the derivatization process, chiral diazepines 9f and 9g were identified as possessing low brain penetration as well as potent in vitro activity against human and mouse BRS-3s.


Subject(s)
Azepines/chemical synthesis , Blood-Brain Barrier , Receptors, Bombesin/agonists , Animals , Azepines/metabolism , Azepines/pharmacology , Brain/drug effects , Cells, Cultured , Humans , Mice , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...