Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 3(9): 5664-5677, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021798

ABSTRACT

This study represents a successful approach toward employing polycaprolactone-polyamidoamine (PCL-PAMAM) linear dendritic block copolymer (LDBC) nanoparticles as small-molecule carriers in NIR imaging and photothermal therapy. A feasible and robust synthetic strategy was used to synthesize a library of amphiphilic LDBCs with well-controlled hydrophobic-to-hydrophilic weight ratios. Systems with a hydrophobic weight ratio higher than 70% formed nanoparticles in aqueous media, which show hydrodynamic diameters of 51.6 and 96.4 nm. These nanoparticles exhibited loading efficiencies up to 21% for a hydrophobic molecule and 64% for a hydrophilic molecule. Furthermore, successful cellular uptake was observed via trafficking into endosomal and lysosomal compartments with an encapsulated NIR theranostic agent (C3) without inducing cell death. A preliminary photothermal assessment resulted in cell death after treating the cells with encapsulated C3 and exposing them to NIR light. The results of this work confirm the potential of these polymeric materials as promising candidates in theranostic nanomedicine.

2.
Polymers (Basel) ; 11(5)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058859

ABSTRACT

Localized gene delivery still remains as a challenging therapeutic method due to the multiple hurdles to overcome. One of the significant factors is a development of a matrix to carry and safely deliver genes at the local site in a controlled manner and then exit and disintegrate harmlessly. This report describes the structural and mechanistic studies on the in-situ forming hydrogels composed of the PEI/DNA multi-layered micelles to apply for gene therapy. The stereocomplexation-driven hydrogel systems from the DNA-loaded and DNA-free PLA-PEG-PLA triblock copolymer micelles that include enantiomeric polylactide blocks exhibited a sol-to-gel transitions between room and body temperatures. These hydrogels have well-described structure and compositions, and improved mechanical properties. Furthermore, the investigation of their degradation profiles and chemical analysis indicated the faster acidic degradation and stepwise degradation process of these micelle-hydrogel systems.

3.
Biomed Mater ; 12(1): 015003, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910815

ABSTRACT

Electrospun chitosan membranes have been investigated for guided bone regeneration but are susceptible to swelling, dissolution, and loss of biomimetic nanofiber structure due to residual acid salts. A novel process was investigated for acidic salt removal from chitosan electrospun in 70% trifluoroacetic acid (TFA) by treating with triethylamine (TEA)/acetone and di-tert-butyl dicarbonate (tBOC) instead of the common Na2CO3 treatment. TFA salt removal and nanofiber structure stabilization were confirmed by EDS, FTIR, 19F NMR and electron microscopy before and after soaking in water. Membrane degradation after 4 weeks in PBS with 100 µg ml-1 lysozyme and osteoblastic proliferation were similar between TEA/tBOC-treated and Na2CO3-treated membranes. A simulated surgical tear test using surgical tacks showed that the peak tensile tear strength of the TEA/tBOC-treated chitosan membranes (62.1 ± 1.9 N mm-1) was significantly greater than a commercial polylactic acid (PLA) membrane (13.4 ± 0.4 N mm-1), similar to one commercial collagen membrane (55.3 ± 7.5 N mm-1) but lower than another commercial collagen membrane (133.9 ± 21.5 N mm-1). Rat 8 mm critical-sized calvarial defects covered with TEA/tBOC-treated chitosan membranes prevented soft tissue infiltration and supported new bone growth (15.76 ± 10.28%) similar to a commercial collagen membrane (16.08 ± 10.69%) at 12 weeks based on microCT analyses. Hence our novel TEA/tBOC process significantly improved nanofiber structure and mechanical strengths of electrospun chitosan membranes as compared to Na2CO3 treated membranes, without affecting in vitro degradation or cytocompatibility, improved membrane mechanical properties to be greater than a commercial PLA membrane and to be in range of commercial collagen membranes and supported calvarial bone defect healing similar to collagen. Thus TEA/tBOC-treated chitosan membranes exhibit many characteristics and properties that strongly support their potential for use in guided bone regeneration.


Subject(s)
Bone Regeneration , Chitosan/chemistry , Acetone/chemistry , Animals , Biocompatible Materials/chemistry , Carbonates/chemistry , Cell Proliferation , Cell Survival , Collagen/chemistry , Ethylamines/chemistry , Inflammation , Male , Membranes, Artificial , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Trifluoroacetic Acid/chemistry , X-Ray Diffraction
4.
J Control Release ; 244(Pt B): 269-279, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27565213

ABSTRACT

New folic acid (FA) coupled three layered micelles (3LM) were designed to encapsulate DNA, and their application as delivery system that specifically targets activated macrophages was investigated for new treatment options in rheumatoid arthritis (RA). FA coupled poly(l-lactide)-b-poly(ethylene glycol) (FA-PEG-PLLA) was synthesized via the NHS-ester activated/amine coupling method. Fluorescein labeled folic acid was used for flow cytometric detection of the expression of functional folic receptor ß in LPS-activated and resting macrophages. FA coupled 3LM were formulated in a two-step procedure and characterized regarding hydrodynamic diameters and zeta potentials. The presence of the targeting ligand was shown not to increase the size of the 3LM compared to their non-targeted counterparts. Targeted and non-targeted 3LM were used in vitro to optimize uptake conditions in the RAW 264.7 macrophage cell line. The amount of FA coupled polymer in the final formulation was found to be optimal at 75% FA-PEG-PLLA and 25% PLLA-PEG-PLLA. Subsequently, transgene expression in vitro in RAW 264.7 cells and ex vivo in primary activated and resting mouse macrophages was determined as a function of FR-mediated internalization of 3LM encapsulating GFP expressing plasmid. FR-overexpressing activated cells, as successfully identified by internalization of FA-fluorescein, showed significantly higher GFP expression in vitro and ex vivo than resting macrophages with only a basal level of FR expression. Lastly, injectable hydrogels as depot formulation were formed by stereocomplexation, and their degradation, DNA release profiles, and dissociation into intact 3LM were found to be beneficial for potential in vivo application. Our findings confirm that FA-3LM are taken up by activated macrophages via folate receptor mediated endocytosis and that their hydrogels release intact 3LM for efficient transfection of primary macrophages. Therefore, FA-3LM could become a promising delivery system for receptor-mediated drug or gene delivery and novel therapy for rheumatoid arthritis in an in situ forming gel formulation.


Subject(s)
Folate Receptor 2/metabolism , Gene Transfer Techniques , Hydrogels/administration & dosage , Macrophages/metabolism , Micelles , Animals , DNA/administration & dosage , DNA/chemistry , Female , Folic Acid/administration & dosage , Folic Acid/chemistry , Green Fluorescent Proteins/genetics , Hydrogels/chemistry , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , RAW 264.7 Cells
5.
Methods Mol Biol ; 1445: 175-85, 2016.
Article in English | MEDLINE | ID: mdl-27436319

ABSTRACT

Polymeric micelles have found a growing interest as gene vectors due to the serious safety concerns associated with viral vectors. In particular, the cationic polymer polyethylene imine (PEI) has shown relatively high condensation and transfection efficiencies. Additionally, polyethylene glycol (PEG) modification of polymeric gene vectors has dramatically improved their biological properties, including enhanced biocompatibility, prolonged circulation time, and increased bio-distribution. However, PEG grafting of PEI for subsequent condensation of nucleic acids (NAs) does not necessarily result in the formation of a PEI/NAs core with a PEG corona. But often times, the presence of PEG interferes with PEI's electrostatic interaction with NAs. We describe here a facile method to prepare multilayered biodegradable micelles which address some of the critical drawbacks associated with current PEI-based systems. The polyplex micelles have superb stability and stealth properties. Moreover, we describe a method to prepare fully biodegradable and biocompatible injectable hydrogels for use in localized gene therapy.


Subject(s)
Hydrogels/administration & dosage , Polyethyleneimine/chemistry , Transfection/methods , Biodegradable Plastics/chemistry , Genetic Therapy , Hydrogels/chemistry , Injections , Micelles , Nucleic Acids/chemistry , Nucleic Acids/genetics , Static Electricity
6.
Macromol Biosci ; 15(5): 698-711, 2015 May.
Article in English | MEDLINE | ID: mdl-25644720

ABSTRACT

"Three-layered micelles" (3LM) composed of two triblock copolymers, poly(L-lactide)-b-polyethyleneimine-b-poly(L-lactide) (PLLA-PEI-PLLA) and poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) are designed to combine electrostatic interaction and solvent-induced condensation of DNA. The low molecular weight PLLA-PEI-PLLA is synthesized by a facile amine-protection/deprotection approach and employed as a gene vector, compacting DNA as a polyplex core in the organo-micelles. The individual organo-micelle is further encapsulated within a PLLA-PEG-PLLA amphiphilic micelle leading to an aqueous stable colloidal dispersion. The resulting spherical 3LM possess a hydrodynamic diameter of ca. 200 nm and zeta potential close to neutral and display excellent stability to competing polyanions such as dextran sulfate in neutral pH (7.4). Such high stability is attributed to the complete shielding of the PEI/DNA polyplex core with an impermeable hydrophobic intermediate layer. However, greater than 90% of the encapsulated DNA are released within 30 min when exposed to slightly acidic pH (4.5). Based on our findings, a new class of non-viral delivery system for nucleic acids with superb stability and stealth properties is identified.


Subject(s)
Biocompatible Materials/chemical synthesis , Gene Transfer Techniques , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polyethyleneimine/analogs & derivatives , Polyethyleneimine/chemical synthesis , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cations , Cell Death/drug effects , DNA/metabolism , Dynamic Light Scattering , Mice , Micelles , Molecular Weight , Polyesters/chemistry , Polyesters/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Proton Magnetic Resonance Spectroscopy , RAW 264.7 Cells , Solutions , Static Electricity , Surface-Active Agents/chemistry
7.
Biomacromolecules ; 13(6): 1828-36, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22537225

ABSTRACT

The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 °C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.


Subject(s)
Hydrogels/chemistry , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Temperature , Hydrodynamics , Hydrogels/chemical synthesis , Micelles , Molecular Weight , Particle Size , Polyesters/chemistry , Polyethylene Glycols/chemistry , Stereoisomerism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...