Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Emerg Infect Dis ; 29(1): 149-153, 2023 01.
Article in English | MEDLINE | ID: mdl-36573719

ABSTRACT

Africa's Lake Tanganyika basin is a cholera hotspot. During 2001-2020, Vibrio cholerae O1 isolates obtained from the Democratic Republic of the Congo side of the lake belonged to 2 of the 5 clades of the AFR10 sublineage. One clade became predominant after acquiring a parC mutation that decreased susceptibility to ciprofloxacin.


Subject(s)
Cholera , Vibrio cholerae O1 , Humans , Vibrio cholerae O1/genetics , Tanzania , Lakes , Cholera/epidemiology , Genomics
3.
Emerg Infect Dis ; 27(12): 3063-3072, 2021 12.
Article in English | MEDLINE | ID: mdl-34808076

ABSTRACT

Despite its critical role in containing outbreaks, the efficacy of contact tracing, measured as the sensitivity of case detection, remains an elusive metric. We estimated the sensitivity of contact tracing by applying unilist capture-recapture methods on data from the 2018-2020 outbreak of Ebola virus disease in the Democratic Republic of the Congo. To compute sensitivity, we applied different distributional assumptions to the zero-truncated count data to estimate the number of unobserved case-patients with any contacts and infected contacts. Geometric distributions were the best-fitting models. Our results indicate that contact tracing efforts identified almost all (n = 792, 99%) of case-patients with any contacts but only half (n = 207, 48%) of case-patients with infected contacts, suggesting that contact tracing efforts performed well at identifying contacts during the listing stage but performed poorly during the contact follow-up stage. We discuss extensions to our work and potential applications for the ongoing coronavirus pandemic.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Contact Tracing , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Hemorrhagic Fever, Ebola/epidemiology , Humans
4.
Euro Surveill ; 25(2)2020 01.
Article in English | MEDLINE | ID: mdl-31964460

ABSTRACT

The ongoing Ebola outbreak in the eastern Democratic Republic of the Congo is facing unprecedented levels of insecurity and violence. We evaluate the likely impact in terms of added transmissibility and cases of major security incidents in the Butembo coordination hub. We also show that despite this additional burden, an adapted response strategy involving enlarged ring vaccination around clusters of cases and enhanced community engagement managed to bring this main hotspot under control.


Subject(s)
Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Democratic Republic of the Congo/epidemiology , Ebolavirus/genetics , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/transmission , Humans , Public Health Practice/economics , Vaccination Coverage
5.
PLoS Negl Trop Dis ; 13(4): e0007263, 2019 04.
Article in English | MEDLINE | ID: mdl-30990822

ABSTRACT

BACKGROUND: In October 2010, Haiti was struck by a large-scale cholera epidemic. The Haitian government, UNICEF and other international partners launched an unprecedented nationwide alert-response strategy in July 2013. Coordinated NGOs recruited local rapid response mobile teams to conduct case-area targeted interventions (CATIs), including education sessions, household decontamination by chlorine spraying, and distribution of chlorine tablets. An innovative red-orange-green alert system was also established to monitor the epidemic at the communal scale on a weekly basis. Our study aimed to describe and evaluate the exhaustiveness, intensity and quality of the CATIs in response to cholera alerts in Haiti between July 2013 and June 2017. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the response to 7,856 weekly cholera alerts using routine surveillance data and severity criteria, which was based on the details of 31,306 notified CATIs. The odds of CATI response during the same week (exhaustiveness) and the number of complete CATIs in responded alerts (intensity and quality) were estimated using multivariate generalized linear mixed models and several covariates. CATIs were carried out significantly more often in response to red alerts (adjusted odds ratio (aOR) [95%-confidence interval, 95%-CI], 2.52 [2.22-2.87]) compared with orange alerts. Significantly more complete CATIs were carried out in response to red alerts compared with orange alerts (adjusted incidence ratio (aIR), 1.85 [1.73-1.99]). Over the course of the eight-semester study, we observed a significant improvement in the exhaustiveness (aOR, 1.43 [1.38-1.48] per semester) as well as the intensity and quality (aIR, 1.23 [1.2-1.25] per semester) of CATI responses, independently of funds available for the strategy. The odds of launching a CATI response significantly decreased with increased rainfall (aOR, 0.99 [0.97-1] per each accumulated cm). Response interventions were significantly heterogeneous between NGOs, communes and departments. CONCLUSIONS/SIGNIFICANCE: The implementation of a nationwide case-area targeted rapid response strategy to control cholera in Haiti was feasible albeit with certain obstacles. Such feedback from the field and ongoing impact studies will be very informative for actors and international donors involved in cholera control and elimination in Haiti and in other affected countries.


Subject(s)
Cholera/epidemiology , Cholera/prevention & control , Disease Outbreaks , Disease Transmission, Infectious/prevention & control , Health Services Research , Infection Control/methods , Infection Control/organization & administration , Haiti/epidemiology , Humans
6.
Emerg Infect Dis ; 24(2): 210-220, 2018 02.
Article in English | MEDLINE | ID: mdl-29350136

ABSTRACT

During 2004-2014, the Democratic Republic of the Congo (DRC) declared 54% of plague cases worldwide. Using national data, we characterized the epidemiology of human plague in DRC for this period. All 4,630 suspected human plague cases and 349 deaths recorded in DRC came from Orientale Province. Pneumonic plague cases (8.8% of total) occurred during 2 major outbreaks in mining camps in the equatorial forest, and some limited outbreaks occurred in the Ituri highlands. Epidemics originated in 5 health zones clustered in Ituri, where sporadic bubonic cases were recorded throughout every year. Classification and regression tree characterized this cluster by the dominance of ecosystem 40 (mountain tropical climate). In conclusion, a small, stable, endemic focus of plague in the highlands of the Ituri tropical region persisted, acting as a source of outbreaks in DRC.


Subject(s)
Disease Outbreaks , Plague/epidemiology , Animals , Democratic Republic of the Congo/epidemiology , Forests , Humans , Mining , Occupational Exposure , Population Surveillance , Retrospective Studies , Time Factors , Zoonoses
8.
PLoS Negl Trop Dis ; 9(6): e0003817, 2015.
Article in English | MEDLINE | ID: mdl-26110870

ABSTRACT

BACKGROUND: Since cholera appeared in Africa during the 1970s, cases have been reported on the continent every year. In Sub-Saharan Africa, cholera outbreaks primarily cluster at certain hotspots including the African Great Lakes Region and West Africa. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied MLVA (Multi-Locus Variable Number Tandem Repeat Analysis) typing of 337 Vibrio cholerae isolates from recent cholera epidemics in the Democratic Republic of the Congo (DRC), Zambia, Guinea and Togo. We aimed to assess the relationship between outbreaks. Applying this method, we identified 89 unique MLVA haplotypes across our isolate collection. MLVA typing revealed the short-term divergence and microevolution of these Vibrio cholerae populations to provide insight into the dynamics of cholera outbreaks in each country. Our analyses also revealed strong geographical clustering. Isolates from the African Great Lakes Region (DRC and Zambia) formed a closely related group, while West African isolates (Togo and Guinea) constituted a separate cluster. At a country-level scale our analyses revealed several distinct MLVA groups, most notably DRC 2011/2012, DRC 2009, Zambia 2012 and Guinea 2012. We also found that certain MLVA types collected in the DRC persisted in the country for several years, occasionally giving rise to expansive epidemics. Finally, we found that the six environmental isolates in our panel were unrelated to the epidemic isolates. CONCLUSIONS/SIGNIFICANCE: To effectively combat the disease, it is critical to understand the mechanisms of cholera emergence and diffusion in a region-specific manner. Overall, these findings demonstrate the relationship between distinct epidemics in West Africa and the African Great Lakes Region. This study also highlights the importance of monitoring and analyzing Vibrio cholerae isolates.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Epidemics/history , Evolution, Molecular , Haplotypes/genetics , Vibrio cholerae/genetics , Africa South of the Sahara/epidemiology , Cluster Analysis , DNA Primers/genetics , Gene Frequency , Genetics, Population , History, 20th Century , History, 21st Century , Humans , Minisatellite Repeats/genetics , Phylogeny , Phylogeography , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...