Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cancer Cell Int ; 24(1): 141, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637796

ABSTRACT

BACKGROUND: Prompt identification and assessment of the disease are essential for reducing the death rate associated with colorectal cancer (COL). Identifying specific causal or sensitive components, such as coding RNA (cRNA) and non-coding RNAs (ncRNAs), may greatly aid in the early detection of colorectal cancer. METHODS: For this purpose, we gave natural chemicals obtained from Sparassis latifolia (SLPs) either alone or in conjunction with chemotherapy (5-Fluorouracil to a mouse colorectal tumor model induced by AOM-DSS. The transcription profile of non-coding RNAs (ncRNAs) and their target hub genes was evaluated using qPCR Real-Time, and ELISA techniques. RESULTS: MSX2, MMP7, ITIH4, and COL1A2 were identified as factors in inflammation and oxidative stress, leading to the development of COL. The hub genes listed, upstream regulatory factors such as lncRNA PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p have been discovered as biomarkers for prognosis and diagnosis of COL. The SLPs and exercise, effectively decreased the size and quantity of tumors. CONCLUSIONS: This effect may be attributed to the modulation of gene expression levels, including MSX2, MMP7, ITIH4, COL1A2, PVT1, NEAT1, KCNQ1OT1, SNHG16, and miR-132-3p. Ultimately, SLPs and exercise have the capacity to be regarded as complementing and enhancing chemotherapy treatments, owing to their efficacious components.

2.
Biology (Basel) ; 12(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37998025

ABSTRACT

The former conventional belief was that cell death resulted from either apoptosis or necrosis; however, in recent years, different pathways through which a cell can undergo cell death have been discovered. Various types of cell death are distinguished by specific morphological alterations in the cell's structure, coupled with numerous biological activation processes. Various diseases, such as cancers, can occur due to the accumulation of damaged cells in the body caused by the dysregulation and failure of cell death. Thus, comprehending these cell death pathways is crucial for formulating effective therapeutic strategies. We focused on providing a comprehensive overview of the existing literature pertaining to various forms of cell death, encompassing apoptosis, anoikis, pyroptosis, NETosis, ferroptosis, autophagy, entosis, methuosis, paraptosis, mitoptosis, parthanatos, necroptosis, and necrosis.

3.
Environ Res ; 238(Pt 2): 117168, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37742751

ABSTRACT

Early diagnosis and prognosis are prerequisites for mitigating mortality in gastric cancer (GaCa). Identifying some causative or sensitive elements (coding RNA (cRNA)-non-cRNAs (ncRNAs)) can be very helpful in the early diagnosis of GaCa. Notably, despite significant development in the GaCa treatment, the outcome of patients does not remain satisfactory due to limitations such as multi-drug resistance and tumor relapse. Therefore, more attention has been drawn to complementary therapies and the use of supplements. In this regard, Polyphenol natural compounds (PNC) and maggot larvae (MaLa) alone or in combination were administered along with chemotherapy (paclitaxel) to N-methyl-N-nitrosourea (MNU)- induced murine tumor model. In addition, in order to identify potential diagnostic or prognostic biomarkers, transcriptomics analysis was performed through a bioinformatics approach. Then transcription profile of ncRNAs with their target hub genes was assessed through qPCR Real-Time, Western blot, and ELISA. According to the bioinformatics results, 17 hub genes (e.g., IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1ß, SPP1, LOX, COL1A1, and IFN-γ) were explored that contribute towards inflammation and oxidative stress and ultimately GaCa development. Upstream of the mentioned hub genes, regulatory factors (lncRNA XIST and NEAT1) were also identified and introduced as prognosis and diagnosis biomarkers for GaCa. Our results showed that PNC alone and in combination with MaLa was able to reduce the size and number of tumors, which is related to the reduction of genes expression levels (including IL-6, CXCL8, MKI67, IL-2, IL-4, IL-10, IL-1ß, SPP1, LOX, COL1A1, IFN-γ, NEAT1, and XIST). In conclusion, PNC and MaLa have the potential to be considered as complementary and improving chemotherapy due to their effective compounds. Also, the introduced hub gene and lncRNA in addition to diagnostic and prognostic biomarkers can be used as druggable proteins for novel therapeutic targeting of GaCa.


Subject(s)
RNA, Long Noncoding , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Interleukin-10 , Interleukin-6 , Interleukin-2 , RNA, Long Noncoding/genetics , Interleukin-4 , Neoplasm Recurrence, Local , Biomarkers , Biology , Computational Biology
4.
Environ Res ; 237(Pt 2): 116980, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37648188

ABSTRACT

Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.

5.
J Mol Neurosci ; 73(2-3): 171-184, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36631703

ABSTRACT

Alzheimer's is a principal concern globally. Machine learning is a valuable tool to determine protective and diagnostic approaches for the elderly. We analyzed microarray datasets of Alzheimer's cases based on artificial intelligence by R statistical software. This study provided a screened pool of ncRNAs and coding RNAs related to Alzheimer's development. We designed hub genes as cut points in networks and predicted potential microRNAs and LncRNA to regulate protein networks in aging and Alzheimer's through in silico algorithms. Notably, we collected effective traditional herbal medicines. A list of bioactive compounds prepared including capsaicin, piperine, crocetin, safranal, saffron oil, coumarin, thujone, rosmarinic acid, sabinene, thymoquinone, ascorbic acid, vitamin E, cyanidin, rhaponticin, isovitexin, coumarin, nobiletin, evodiamine, gingerol, curcumin, quercetin, fisetin, and allicin as an effective fusion that potentially modulates hub proteins and molecular signaling pathways based on pharmacophore model screening and chemoinformatics survey. We identified profiles of 21 mRNAs, 272 microRNAs, and eight LncRNA in Alzheimer's based on prediction algorithms. We suggested a fusion of senolytic herbal ligands as an alternative therapy and preventive formulation in dementia. Also, we provided ncRNAs expression status as novel monitoring strategies in Alzheimer's and new cut-point proteins as novel therapeutic approaches. Synchronizing fusion drugs and lifestyle could reverse Alzheimer's hallmarks to amelioration via an offset of the signaling pathways, leading to increased life quality in the elderly.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Long Noncoding , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/diagnosis , Senotherapeutics , Artificial Intelligence , MicroRNAs/genetics , Life Style
6.
J Food Biochem ; 46(12): e14480, 2022 12.
Article in English | MEDLINE | ID: mdl-36239429

ABSTRACT

Cytokine storms lead to cardiovascular diseases (CVDs). Natural herbal compounds are considered the primary source of active agents with the potential to prevent or treat inflammatory-related pathologies such as CVD and diabetes. Flaxseed contains phytochemicals, including secoisolariciresinol diglucoside (SDG), α-linolenic acid (ALA), and lignans, termed "SAL." Hence, we evaluated the effect of the SAL on the H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Here, candidate hub genes, TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7, were selected as effective genes in diabetic cardiovascular pathogenesis based on in-silico analysis and chemoinformatic. Myocardial infarction (MI) was induced using H9c2 cardiac cells in hyperlipidemic and hyperglycemic conditions. Real-time qPCR was conducted to assess the expression level of hub genes. This study indicated that SAL compounds bound to the Il-6, SIRT1, and TNF-α active sites as druggable candidate proteins based on the chemoinformatics analysis. This study displayed that the TNF-α, IL6, SIRT1, NRF1, NPPA, and FGF7 network dysfunction in MI models were ameliorated by SAL consumption. Furthermore, SAL compounds improved the function and myogenesis of H9c2 cells in hyperlipidemic and hyperglycemic conditions. Our data suggested that phytochemicals obtained from flaxseed might have proposed potential complementary treatment or preventive strategies for MI. PRACTICAL APPLICATIONS: Phytochemicals obtained from flaxseed (SAL) could reverse diabetic heart dysfunction hallmarks and provide new potential treatment approaches in cardiovascular therapy. SAL could be considered complementary and alternative medicines for treating various disorders/diseases singly or synchronizing with prescription drugs.


Subject(s)
Diabetes Mellitus , Flax , Lignans , Flax/chemistry , Lignans/chemistry , alpha-Linolenic Acid , Sirtuin 1 , Tumor Necrosis Factor-alpha , Pharmacophore , Computational Chemistry , Interleukin-6 , Phytochemicals
8.
Mol Neurobiol ; 59(7): 4106-4123, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35476290

ABSTRACT

Depression is a frequent mood disorder that might impair the brain-gut axis. In this study, we divided 30 mice into five groups: untreated mice, mice with depression-like behaviors, mice with depression-like behaviors treated with consumed leucine, mice with depression-like behaviors treated with exercise training, mice with depression-like behaviors treated with exercise training along with consumed leucine. According to artificial intelligence biological analysis, we found some mediators such as lncRNAs profile and Kdr/Vegfα/Pten/Bdnf interactions network in the hippocampus region and ileum tissue which could be decisive molecules in the brain-gut axis. Moreover, KDR as a principal cutpoint protein in the network was identified as the pharmaceutical approach for major depressive ameliorating based on pharmacophore modeling and molecular docking outcomes. Furthermore, we indicated that the mRNA and protein level of the Pten enhanced and Vegfα/Kdr/Bdnf mRNAs, as well as the protein level of KDR, decreased in mice with depression-like behaviors. Moreover, exercise and leucine ameliorated the brain-gut axis in mice with depression-like behaviors. Exercise and leucine regulated the lncRNAs network in the hippocampus and ileum of mice with depression-like behaviors. We suggest that the lncRNAs profiles could be considered as diagnosis and prognosis biomarkers, and exercise + leucine might be a practical approach to improve depression.


Subject(s)
Depressive Disorder, Major , RNA, Long Noncoding , Animals , Artificial Intelligence , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Depressive Disorder, Major/metabolism , Hippocampus/metabolism , Leucine , Mice , Molecular Docking Simulation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
9.
Nutr Metab (Lond) ; 19(1): 17, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248109

ABSTRACT

BACKGROUND: Skeletal muscle mitochondria is one of the most important affected sites of T2DM and its molecular mechanism is yet to be elucidated. Some recent theories believed that mitochondrial markers are upregulated in response to high fat induced T2DM; however, the reasons and the affected factors are still uncertain. In this regard, we aimed to investigate the effect of high fat induced T2DM on mitochondrial markers of skeletal muscle, and an herbal component along with endurance exercise, as probable treatments, in AGE-rich high-fat diet (AGEs-HFD) induced T2DM mice. METHODS: T2DM was induced by 16 weeks of AGEs-HFD consumption in male C57BL/6 mice, followed by 8 weeks of drugs ingestion and endurance exercise treatments (n = 6 in each group and total number of 42 mice). The herbal component was an aquatic extract of Salvia officinalis, Trigonella foenum-graecum, Panax ginseng, and Cinnamomum zeylanicum, termed "SGTC". We then examined the relative expression of several mitochondrial markers, including Ppargc1α, Tfam, and electron transport chain genes and ATP levels, in skeletal muscle samples. RESULTS: T2DM was successfully induced according to morphological, biochemical, and molecular observations. All mitochondrial markers, including Ppargc1a, Tfam, Cpt2, and electron transport chain genes, were upregulated in T2DM group compared to controls with no significant changes in the ATP levels. Most mitochondrial markers were downregulated by drug treatment compared to T2DM, but the ATP level was not significantly altered. All mitochondrial markers were upregulated in exercised group compared to T2DM with mild increase in the ATP level. The Ex + SGTC group had moderate level of mitochondrial markers compared to T2DM, but the highest ATP production. CONCLUSION: The highly significant overexpression of mitochondrial markers may be in response to free fatty acid overload. However, the lack of significant change in the ATP level may be a result of ROS generation due to electron leakage in the AGEsRAGE axis and electron transport chain. Almost all treatments ameliorate mitochondrial markers' overexpression. The SGTC appears to regulate this with its antioxidant properties. Instead, exercise upregulated mitochondrial markers efficiently; however, the most efficient results, i.e. the most ATP production among the treatments, were observed in the Ex + SGTC group.

10.
J Pers Med ; 12(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35330456

ABSTRACT

Dysregulated mRNA-miRNA profiles might have the prospective to be used for early diagnosis of gastrointestinal cancers, estimating survival, and predicting response to treatment. Here, a novel biomarker based on miRNAs binding to mRNAs in single nucleotide polymorphism (SNP) sites related to gastrointestinal cancers is introduced that could act as an early diagnosis. The electronic databases used for the recruiting published articles included EMBASE, SCOPUS, Web of Science, and PubMed, based on MESH keywords and PRISMA methodology. Based on the considered criteria, different experimental articles were reviewed, during which 15 studies with the desired criteria were collected. Accordingly, novel biomarkers in prediction, early prognosis, and diagnosis of gastrointestinal cancers were highlighted. Moreover, it was found that 20 SNP sites and 16 miRNAs were involved in gastrointestinal cancers, with altered expression patterns associated with clinicopathological and demographic data. The results of this systematic study revealed that SNPs could affect the binding of miRNAs in the SNP sites that might play a principal role in the progression, invasion, and susceptibility of gastrointestinal cancers. In addition, it was found that the profiles of SNPs and miRNAs could serve as a convenient approach for the prognosis and diagnosis of gastric and colorectal cancers.

11.
J Biochem Mol Toxicol ; 36(6): e23041, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35343021

ABSTRACT

Doxorubicin (Dox) is an antitumor agent widely used in cancer therapy, with notable side effects of cardiac toxicity. Peroxisome proliferator-activated receptor γ (PPARγ), is a transcriptional factor with antiapoptotic and anti-inflammatory properties. Recently we indicated that cardiac toxicity of Dox was due to upregulation of miR-130a and further suppressive effect on cardiac Pparγ in vitro. In this study, we extended our proposed hypothesis in vivo. To achieve this, pioglitazone (Pio) and GW9662 were used as the specific agonist and antagonist of Pparγ to treat Dox-injected mice. Heart function, apoptosis, and inflammation in heart tissue were studied. Pretreatment of Dox-injected mice with Pio resulted in elevated expression of Pparγ and suppression of miR-130a. However, GW9662 pretreatment was unable to increase miR-130a expression. Pio pretreatment led to partially cardiac toxicity limitation of Dox whereas GW9662 caused heart damage. Finally, our observation determined that activation of Pparγ was not adequate to reverse the Dox-induced toxicity completely.


Subject(s)
MicroRNAs , PPAR gamma , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Cardiotoxicity/etiology , Down-Regulation , Doxorubicin/toxicity , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR gamma/metabolism , Pioglitazone/pharmacology
12.
Acta Histochem ; 124(2): 151844, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35045377

ABSTRACT

Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, ß-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Neurodegenerative Diseases , Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Exercise , Humans , Metabolic Diseases/metabolism , Neurodegenerative Diseases/metabolism
13.
Nutr Metab (Lond) ; 18(1): 77, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34380504

ABSTRACT

BACKGROUND: Obesity is associated with many comorbidities including inflammatory bowel disease (IBD). We investigated prophylactic effects of an herbal extract (HE) on the DSS-induced colitis mice challenged with high AGEs-fat diet 60% (HFD). METHODS: Six-week-old C57BL/6 male mice were fed with either HFD (8 groups, 6 mice in each group), or normal diet (ND) (8 groups, 6 mice in each group). After 6 weeks, animals received HE (combination of turmeric, ginger, boswellia and cat's claw extract) for 7 weeks in three doses (high dose (0.6 mg/g); low dose (0.15 mg/g) and mid dose (0.3 mg/g)). Next, mice were subjected to 2.5% DSS in drinking water. Control mice received ND and instead of HE and DSS they received distilled water. Obesity index markers were determined, H&E staining and TUNEL assay evaluated apoptosis. Colonic expressions of IL-6, RAGE, AGER1, Sirt1, Bax, Bcl2, ZO-1 and P53 were determined. RESULTS: HE ameliorated colitis in HFD mice by reducing colonic myeloperoxidase activity (by 2.3-fold), macrophage accumulation (by 2.6-fold) and mRNA expression of IL-6 (by 2.3-fold) in HFD mice. Moreover, HE restored ZO-1 (by 2.7-fold), prevented apoptosis and maintained immune homeostasis. HE reduced activation of NF-κB protein (by 1.3-fold) through decreasing RAGE (by 1.93-fold) and up-regulation of Sirt1 (by 7.71-fold) and prevented down-regulation of DDOST (by 6.6-fold) in HFD mice. CONCLUSIONS: HE ameliorated colitis in prophylactic in HFD mice and it was, at least partly, due to the restoration of the gut integrity, suppression of inflammation and apoptosis via modulation of colonic Sirt1, RAGE and DDOST signaling.

14.
Int J Fertil Steril ; 15(3): 226-233, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34155870

ABSTRACT

BACKGROUND: We aimed to compare the effects of using high-fat (HF) and advanced glycation end-products (AGEs) containing dietsto induce obesity and diabetes on sperm function in mice. MATERIALS AND METHODS: In this experimental study, twenty-five 4-week old C57BL/6 mice were divided into 5 groups and were fed with control, 45% HF, 60% HF, 45% AGEs-HF, or 60% AGEs-HF diet. After 28 weeks, fast blood sugar, glucose intolerance, insulin concentration, homeostatic model assessments (HOMA) for insulin resistance (IR) and HOMA for beta cells (HOMA beta) from systematic blood were assessed. In addition, body weight, morphometric characteristics of testes, sperm parameters, DNA damage (AO), protamine deficiency (CMAA3), and sperm membrane (DCFH-DA) and intracellular (BODIPY) lipid peroxidation were measured. RESULTS: Body mass and fasting blood sugar increased significantly in all experimental groups compared to the control group. Insulin concentration, glucose intolerance, HOMA IR, and HOMA beta were also increased significantly with higher levels of fat and AGEs in all four diets (P<0.05). The changes in the 60% HF-AGEs group, however, were more significant (P<0.001). Morphometric characteristics of the testis, sperm concentration, and sperm morphology in the diet groups did not significantly differ from the control group, while sperm motility and DNA damage in the 45%HF were significantly low. Although for protamine deficiency, both 60% HF-AGEs and 45% HF showed a significant increase compared to the control, the mean of sperm lipid in the 45% HF group and intracellular peroxidation in the 60% HF-AGEs group had the highest and the lowest increases, respectively. CONCLUSION: Our results, interestingly, showed that isthe negative effects of a diet containing AGEs on examined parameters are lessthan those in HF diets. One possible reason is detoxification through the activation of the protective glyoxalase pathway asthe result of the chronic AGEs increase in the body.

16.
Nutr Metab (Lond) ; 18(1): 14, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468193

ABSTRACT

BACKGROUND: SPTC is a mix of four herbal components (Salvia officinalis, Panax ginseng, Trigonella foenum-graeceum, and Cinnamomum zeylanicum) which might be prevented the development of AGE rich diet-induced diabetic complication and liver injury through activated the nuclear factor erythroid-2-related-factor-2 (Nrf2) pathway. Nrf2, as a master regulator of antioxidant response elements by activating cytoprotective genes expression, is decreased oxidative stress that associated with hyperglycemia and increases insulin sensitivity. the aim of this study was to assess whether the combination therapy of SPTC along with exercise or metformin moderate oxidative stress related liver injurie with more favorable effects in the treatment of AGE rich diet-induced type 2 diabetic mice. METHODS: We induced diabetes in C57BL/6 mice by AGE using a diet supplementation and limitation of physical activity. After 16 weeks of intervention, AGE fed mice were compared to control mice. Diabetic mice were assigned into seven experimental groups (each group; n = 5): diabetic mice, diabetic mice treated with SPTC (130 mg/kg), diabetic mice treated with Salvia Officinalis (65 mg/kg), diabetic mice treated with metformin (300 mg/kg), diabetic mice with endurance exercise training, diabetic mice treated with SPTC + metformin (130/300 mg/kg), diabetic mice treated with SPTC + exercise training. RESULTS: SPTC + exercise and SPTC + metformin reduced diabetic complications like gain weight, water and calorie intake, blood glucose, insulin, and GLUT4 content more efficiently than each treatment. These combinations improved oxidative stress hemostasis by activating the Nrf2 signaling pathway and attenuating keap1 protein more significantly. CONCLUSION: Eventually, combined treatment of SPTC with exercise or metformin as a novel approach had more beneficial effects to prevent the development of diabetes and oxidative stress associated with hyperglycemia.

17.
Front Oncol ; 10: 552283, 2020.
Article in English | MEDLINE | ID: mdl-33117687

ABSTRACT

Receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein taken in diverse chronic inflammatory conditions. RAGE behaves as a pattern recognition receptor, which binds and is engaged in the cellular response to a variety of damage-associated molecular pattern molecules, as well as HMGB1, S100 proteins, and AGEs (advanced glycation end-products). The RAGE activation turns out to a formation of numerous intracellular signaling mechanisms, resulting in the progression and prolongation of colorectal carcinoma (CRC). The RAGE expression correlates well with the survival of colon cancer cells. RAGE is involved in the tumorigenesis, which increases and develops well in the stressed tumor microenvironment. In this review, we summarized downstream signaling cascade activated by the multiligand activation of RAGE, as well as RAGE ligands and their sources, clinical studies, and tumor markers related to RAGE particularly in the inflammatory tumor microenvironment in CRC. Furthermore, the role of RAGE signaling pathway in CRC patients with diabetic mellitus is investigated. RAGE has been reported to drive assorted signaling pathways, including activator protein 1, nuclear factor-κB, signal transducer and activator of transcription 3, SMAD family member 4 (Smad4), mitogen-activated protein kinases, mammalian target of rapamycin, phosphoinositide 3-kinases, reticular activating system, Wnt/ß-catenin pathway, and Glycogen synthase kinase 3ß, and even microRNAs.

18.
Andrologia ; 51(2): e13183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30411393

ABSTRACT

Individuals who regularly exercise utilise dietary supplements to enhance their exercise routine and to increase lean mass. Branched-chain amino acids (BCAAs) are a popular supplement and have been shown to produce a number of beneficial effects in rodent and human models. Therefore, in the present study, the effect of exercise and/or BCAA on sperm parameters and testes tissue was assessed. C57BL6 male mice were divided to six groups; Control, Exercise (Exc), BCAA (consumes 20 mg BCAAs), BCAA+ (consumes 60 mg BCAAs), BCAA/Exc (consumes 20 mg BCAAs during aerobic training) and BCAA+/Exc (consumes 60 mg BCAAs during aerobic training). After 8 weeks of exercise and oral treatment with BCAA; testes and epididymides were dissected, and sperm function and plasma testosterone were assessed. Exercise significantly improved sperm motility and plasma testosterone in Exercise groups with or without BCAA. Percentage of sperm lipid peroxidation was significantly decreased in Exercise group, while intensity of lipid peroxidation at the same group has significantly increased. Epithelium diameters, meiotic index and Johnson' grade did not show any changes between groups. Unlike intensive exercise, endurance exercise along with modest supplementation of BCAAs, but not an overdose, may have some synergic effect on sperm function and testosterone production.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , Physical Conditioning, Animal/physiology , Sperm Motility/drug effects , Spermatozoa/drug effects , Testosterone/blood , Animals , Dietary Supplements , Lipid Peroxidation/drug effects , Male , Mice
19.
Nutr Metab (Lond) ; 15: 59, 2018.
Article in English | MEDLINE | ID: mdl-30181762

ABSTRACT

BACKGROUND: Previous studies have revealed the inductive effect of branched-chain amino acids (BCAAs) catabolism on fatty acid oxidation and metabolism, especially in muscle cells. In the present investigation, we have attempted to address whether a combination of BCAAs supplement consumption with aerobic exercise could elaborate the expression of PPARγ, Pgc-1α and Fndc5 genes in gastrocnemius muscle and heart tissue of male C57BL/6 mice. METHODS: Thirty-six young male mice with an average weight of 18 ± 2 g were selected. Mice were randomly assigned to 6 groups: 20 mg/mL of BCAAs consumption with simultaneous exercise-training, 60 mg/mL of BCAAs consumption with simultaneous exercise-training, exercise-trained with no BCAAs consumption group, 20 mg/mL BCAAs without exercise-training, 60 mg/mL BCAAs without exercise-training, and untrained mice without BCAAs consumption. RESULTS: The findings showed a combination of 20 mg/mL BCAAs with aerobic exercise significantly increased Fndc5, PPARγ, Pgc-1α gene expression in skeletal muscles although, circulating Irisin levels remained unchanged (p < 0.05). Interestingly, plasma urea and lactate levels were significantly increased in 60 mg/mL BCAAs administrated mice which performed exercised (p < 0.05). Two-way analysis of variance (ANOVA) was used to examine significant difference between groups and sedentary group. CONCLUSIONS: Results showed inductive effect of 20 mg/mL BCAAs on expression levels of Fndc5, PPARγ, Pgc-1α in gastrocnemius muscle similar with counterparts in heart tissue. Of note, higher serum irisin levels were detected after 20 mg/mL BCAAs supplementation coincided with the exercise. GRAPHICAL ABSTRACT: An Overview on supplemantaion of branched chain amoinoacids on metablism of skeletal muscle and heart.

SELECTION OF CITATIONS
SEARCH DETAIL
...