Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 148, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627275

ABSTRACT

Because of the extreme purity, lack of disorder, and complex order parameter, the first-order superfluid 3He A-B transition is the leading model system for first order transitions in the early universe. Here we report on the path dependence of the supercooling of the A phase over a wide range of pressures below 29.3 bar at nearly zero magnetic field. The A phase can be cooled significantly below the thermodynamic A-B transition temperature. While the extent of supercooling is highly reproducible, it depends strongly upon the cooling trajectory: The metastability of the A phase is enhanced by transiting through regions where the A phase is more stable. We provide evidence that some of the additional supercooling is due to the elimination of B phase nucleation precursors formed upon passage through the superfluid transition. A greater understanding of the physics is essential before 3He can be exploited to model transitions in the early universe.

2.
Nat Commun ; 13(1): 5873, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36198680

ABSTRACT

Low dimensional fermionic quantum systems are exceptionally interesting because they reveal distinctive physical phenomena, including among others, topologically protected excitations, edge states, frustration, and fractionalization. Our aim was to confine 3He on a suspended carbon nanotube to form 2-dimensional Fermi-system. Here we report our measurements of the mechanical resonance of the nanotube with adsorbed sub-monolayer down to 10 mK. At intermediate coverages we have observed the famous 1/3 commensurate solid. However, at larger monolayer densities we have observed a quantum phase transition from 1/3 solid to an unknown, soft, and mobile solid phase. We interpret this mobile solid phase as a bosonic commensurate crystal consisting of helium dimers with topologically-induced zero-point vacancies which are delocalized at low temperatures. We thus demonstrate that 3He on a nanotube merges both fermionic and bosonic phenomena, with a quantum phase transition between fermionic solid 1/3 phase and the observed bosonic dimer solid.

3.
Nat Commun ; 11(1): 4843, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32973182

ABSTRACT

The investigation of transport properties in normal liquid helium-3 and its topological superfluid phases provides insights into related phenomena in electron fluids, topological materials, and putative topological superconductors. It relies on the measurement of mass, heat, and spin currents, due to system neutrality. Of particular interest is transport in strongly confining channels of height approaching the superfluid coherence length, to enhance the relative contribution of surface excitations, and suppress hydrodynamic counterflow. Here we report on the thermal conduction of helium-3 in a 1.1 µm high channel. In the normal state we observe a diffusive thermal conductivity that is approximately temperature independent, consistent with interference of bulk and boundary scattering. In the superfluid, the thermal conductivity is only weakly temperature dependent, requiring detailed theoretical analysis. An anomalous thermal response is detected in the superfluid which we propose arises from the emission of a flux of surface excitations from the channel.

4.
Nanotechnology ; 30(25): 25LT01, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30840930

ABSTRACT

We demonstrate a fabrication scheme for clean suspended structures using chemical-vapor-deposition-grown graphene and a dry transfer method on lift-off-resist-coated substrates to facilitate suspended graphene nanoelectronic devices for technological applications. It encompasses the demands for scalable fabrication as well as for ultra-fast response due to weak coupling to environment. The fabricated devices exhibited initially a weak field-effect response with substantial positive (p) doping which transformed into weak negative (n) doping upon current annealing at the temperature of 4 K. With increased annealing current, n-doping gradually decreased while the Dirac peak position approached zero in gate voltage. An ultra-low residual charge density of 9 × 108 cm-2 and a mobility of 1.9 × 105 cm2 V-1 s-1 were observed. Our samples display clear Fabry-Pérot (FP) conductance oscillation which indicates ballistic electron transport. The spacings of the FP oscillations are found to depend on the charge density in a manner that agrees with theoretical modeling based on Klein tunneling of Dirac particles. The ultra-low residual charge, the FP oscillations with density dependent period, and the high mobility prove the excellent quality of our suspended graphene devices. Owing to its simplicity, scalability and robustness, this fabrication scheme enhances possibilities for production of suspended, high-quality, two-dimensional-material structures for novel electronic applications.

5.
Rev Sci Instrum ; 89(7): 073902, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068088

ABSTRACT

We demonstrate the fabrication of ∼1.08 µm deep microfluidic cavities with characteristic size as large as 7 mm × 11 mm or 11 mm diameter, using a silicon-glass anodic bonding technique that does not require posts to act as separators to define cavity height. Since the phase diagram of 3He is significantly altered under confinement, posts might act as pinning centers for phase boundaries. The previous generation of cavities relied on full wafer-bonding which is more prone to failure and requires dicing post-bonding, whereas these cavities are made by bonding a pre-cut piece of Hoya SD-2 glass to a patterned piece of silicon in which the cavity is defined by etching. Anodic bonding was carried out at 425 °C with 200 V, and we observe that pressurizing the cavity to failure (>30 bars pressure) results in glass breaking, rather than the glass-silicon bond separation. In this article, we discuss the detailed fabrication of the cavity, its edges, and details of the junction between the coin silver fill line and the silicon base of the cavity that enables a low internal-friction joint. This feature is important for mass coupling torsional oscillator experimental assays of the superfluid inertial contribution where a high quality factor (Q) improves frequency resolution. The surface preparation that yields well-characterized smooth surfaces to eliminate pinning sites, the use of transparent glass as a cover permitting optical access, low temperature capability, and attachment of pressure-capable ports for fluid access may be features that are important in other applications.

6.
Nat Commun ; 8: 15963, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28671184

ABSTRACT

The influence of confinement on the phases of superfluid helium-3 is studied using the torsional pendulum method. We focus on the transition between the A and B phases, where the A phase is stabilized by confinement and a spatially modulated stripe phase is predicted at the A-B phase boundary. Here we discuss results from superfluid helium-3 contained in a single 1.08-µm-thick nanofluidic cavity incorporated into a high-precision torsion pendulum, and map the phase diagram between 0.1 and 5.6 bar. We observe only small supercooling of the A phase, in comparison to bulk or when confined in aerogel, with evidence for a non-monotonic pressure dependence. This suggests that an intrinsic B-phase nucleation mechanism operates under confinement. Both the phase diagram and the relative superfluid fraction of the A and B phases, show that strong coupling is present at all pressures, with implications for the stability of the stripe phase.

7.
Nano Lett ; 17(7): 3995-4002, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28537401

ABSTRACT

We investigate the nonlinear mechanics of a bimetallic, optically absorbing SiN-Nb nanowire in the presence of incident laser light and a reflecting Si mirror. Situated in a standing wave of optical intensity and subject to photothermal forces, the nanowire undergoes self-induced oscillations at low incident light thresholds of <1 µW due to engineered strong temperature-position (T-z) coupling. Along with inducing self-oscillation, laser light causes large changes to the mechanical resonant frequency ω0 and equilibrium position z0 that cannot be neglected. We present experimental results and a theoretical model for the motion under laser illumination. In the model, we solve the governing nonlinear differential equations by perturbative means to show that self-oscillation amplitude is set by the competing effects of direct T-z coupling and 2ω0 parametric excitation due to T-ω0 coupling. We then study the linearized equations of motion to show that the optimal thermal time constant τ for photothermal feedback is τ → ∞ rather than the previously reported ω0 τ = 1. Lastly, we demonstrate photothermal quality factor (Q) enhancement of driven motion as a means to counteract air damping. Understanding photothermal effects on nano- and micromechanical devices, as well as nonlinear aspects of optics-based motion detection, can enable new device applications as oscillators or other electronic elements with smaller device footprints and less stringent ambient vacuum requirements.

8.
Nat Commun ; 7: 12975, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27669660

ABSTRACT

In bulk superfluid 3He at zero magnetic field, two phases emerge with the B-phase stable everywhere except at high pressures and temperatures, where the A-phase is favoured. Aerogels with nanostructure smaller than the superfluid coherence length are the only means to introduce disorder into the superfluid. Here we use a torsion pendulum to study 3He confined in an extremely anisotropic, nematically ordered aerogel consisting of ∼10 nm-thick alumina strands, spaced by ∼100 nm, and aligned parallel to the pendulum axis. Kinks in the development of the superfluid fraction (at various pressures) as the temperature is varied correspond to phase transitions. Two such transitions are seen in the superfluid state, and we identify the superfluid phase closest to Tc at low pressure as the polar state, a phase that is not seen in bulk 3He.

9.
Nat Nanotechnol ; 11(9): 741-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27294504

ABSTRACT

A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling-energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 10(5)) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large elastic modulus of this material and capability for spatial symmetry breaking via electrostatic forces is expected to generate a wealth of nonlinear phenomena, including tunable intermodal coupling. We have fabricated circular graphene membranes and report strong phonon-cavity effects at room temperature, despite the modest Q factor (∼100) of this system. We observe both amplification into parametric instability (mechanical lasing) and the cooling of Brownian motion in the fundamental mode through excitation of cavity sidebands. Furthermore, we characterize the quenching of these parametric effects at large vibrational amplitudes, offering a window on the all-mechanical analogue of cavity optomechanics, where the observation of such effects has proven elusive.

10.
Nano Lett ; 15(11): 7621-6, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26479952

ABSTRACT

We study the effect of localized Joule heating on the mechanical properties of doubly clamped nanowires under tensile stress. Local heating results in systematic variation of the resonant frequency; these frequency changes result from thermal stresses that depend on temperature dependent thermal conductivity and expansion coefficient. The change in sign of the linear expansion coefficient of InAs is reflected in the resonant response of the system near a bath temperature of 20 K. Using finite element simulations to model the experimentally observed frequency shifts, we show that the thermal conductivity of a nanowire can be approximated in the 10-60 K temperature range by the empirical form κ = bT W/mK, where the value of b for a nanowire was found to be b = 0.035 W/mK(2), significantly lower than bulk values. Also, local heating allows us to independently vary the temperature of the nanowire relative to the clamping points pinned to the bath temperature. We suggest a loss mechanism (dissipation ~10(-4)-10(-5)) originating from the interfacial clamping losses between the metal and the semiconductor nanostructure.

11.
Nanoscale ; 7(33): 14109-13, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26242482

ABSTRACT

We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA-cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 ± 340 Ω µm. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.

12.
Nanotechnology ; 26(12): 125502, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25741743

ABSTRACT

A graphene channel field-effect biosensor is demonstrated for detecting the binding of double-stranded DNA and poly-l-lysine. Sensors consist of chemical vapor deposition graphene transferred using a clean, etchant-free transfer method. The presence of DNA and poly-l-lysine are detected by the conductance change of the graphene transistor. A readily measured shift in the Dirac voltage (the voltage at which the graphene's resistance peaks) is observed after the graphene channel is exposed to solutions containing DNA or poly-l-lysine. The 'Dirac voltage shift' is attributed to the binding/unbinding of charged molecules on the graphene surface. The polarity of the response changes to positive direction with poly-l-lysine and negative direction with DNA. This response results in detection limits of 8 pM for 48.5 kbp DNA and 11 pM for poly-l-lysine. The biosensors are easy to fabricate, reusable and are promising as sensors of a wide variety of charged biomolecules.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Graphite/chemistry , Polylysine/analysis , Transistors, Electronic , Animals , Humans
13.
Nano Lett ; 13(10): 4685-9, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24000932

ABSTRACT

We study the strain state of doubly clamped VO2 nanobeam devices by dynamically probing resonant frequency of the nanoscale electromechanical device across the metal-insulator transition. Simultaneous resistance and resonance measurements indicate M1-M2 phase transition in the insulating state with a drop in resonant frequency concomitant with an increase in resistance. The resonant frequency increases by ~7 MHz with the growth of metallic domain (M2-R transition) due to the development of tensile strain in the nanobeam. Our approach to dynamically track strain coupled with simultaneous resistance and resonance measurements using electromechanical resonators enables the study of lattice-involved interactions more precisely than static strain measurements. This technique can be extended to other phase change systems important for device applications.


Subject(s)
Nanostructures/chemistry , Nanotechnology , Metals , Phase Transition , Vibration
14.
Nano Lett ; 12(12): 6432-5, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23171031

ABSTRACT

We study InAs nanowire resonators fabricated on sapphire substrate with a local gate configuration. The key advantage of using an insulating sapphire substrate is that it results in a reduced parasitic capacitance, thus allowing both wide bandwidth actuation and detection using a network analyzer as well as signal detection at room temperature. Both in-plane and out-of-plane vibrational modes of the nanowire can be driven and the nonlinear response of the resonators studied. In addition, this technique enables the study of variation of thermal strains due to heating in nanostructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...