Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911072

ABSTRACT

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Interleukin-6 , Mice , Plaque, Amyloid
2.
Nat Med ; 25(1): 165-175, 2019 01.
Article in English | MEDLINE | ID: mdl-30617325

ABSTRACT

Defective brain hormonal signaling has been associated with Alzheimer's disease (AD), a disorder characterized by synapse and memory failure. Irisin is an exercise-induced myokine released on cleavage of the membrane-bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), also expressed in the hippocampus. Here we show that FNDC5/irisin levels are reduced in AD hippocampi and cerebrospinal fluid, and in experimental AD models. Knockdown of brain FNDC5/irisin impairs long-term potentiation and novel object recognition memory in mice. Conversely, boosting brain levels of FNDC5/irisin rescues synaptic plasticity and memory in AD mouse models. Peripheral overexpression of FNDC5/irisin rescues memory impairment, whereas blockade of either peripheral or brain FNDC5/irisin attenuates the neuroprotective actions of physical exercise on synaptic plasticity and memory in AD mice. By showing that FNDC5/irisin is an important mediator of the beneficial effects of exercise in AD models, our findings place FNDC5/irisin as a novel agent capable of opposing synapse failure and memory impairment in AD.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Fibronectins/metabolism , Memory Disorders/complications , Memory Disorders/physiopathology , Neuronal Plasticity , Physical Conditioning, Animal , Adolescent , Adult , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Down-Regulation , Female , Fibronectins/cerebrospinal fluid , Fibronectins/genetics , Humans , Long-Term Potentiation , Male , Mice, Inbred C57BL , Middle Aged , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL