Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38805353

ABSTRACT

The rational application of fertilizers is crucial for achieving high crop yields and ensuring global food security. The use of biopolymers for slow-release fertilizers (SRFs) development has emerged as a game-changer and environmentally sustainable pathway to enhance crop yields by optimizing plant growth phases. Herein, with a renewed focus on circular bioeconomy, a novel functionalized lignin-based coating material (FLGe) was developed for the sustained release of nutrients. This innovative approach involved the extraction and sustainable functionalization of lignin through a solvent-free esterification reaction with humic acid─an organic compound widely recognized for its biostimulant properties in agriculture. The primary objective was to fortify the hydration barrier of lignin by reducing the number of its free hydroxyl groups, thereby enhancing release control, while simultaneously harnessing the agronomic benefits offered by humic acid. After confirming the synthesis of functionalized lignin (FLGe) through 13C NMR analysis, it was integrated at varying proportions into either a cellulosic or starch matrix. This resulted in the creation of five distinct formulations, which were then utilized as coatings for diammonium phosphate (DAP) fertilizer. Experimental findings revealed an improved morphology and hardness (almost 3-fold) of DAP fertilizer granules after coating along with a positive impact on the soil's water retention capacity (7%). Nutrient leaching in soil was monitored for 100 days and a substantial reduction of nutrients leaching up to 80% was successfully achieved using coated DAP fertilizer. Furthermore, to get a fuller picture of their efficiency, a pot trial was performed using two different soil textures and demonstrated that the application of FLGe-based SRFs significantly enhanced the physiological and agronomic parameters of wheat, including leaf evolution and root architecture, resulting in an almost 50% increase in grain yield and improved quality. The results proved the potential of lignin functionalization to advance agricultural sustainability and foster a robust bioeconomy aligning with the premise "from the soil to the soil".

2.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Article in English | MEDLINE | ID: mdl-38679259

ABSTRACT

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Subject(s)
Cadmium , Chitin , Chitin/chemistry , Chitin/isolation & purification , Cadmium/chemistry , Cadmium/isolation & purification , Animals , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Animal Shells/chemistry , Phosphorylation , Hydrogen-Ion Concentration , Kinetics , Temperature , Water Purification/methods , Waste Products , Spectroscopy, Fourier Transform Infrared
3.
Front Chem ; 12: 1285230, 2024.
Article in English | MEDLINE | ID: mdl-38545467

ABSTRACT

The presence of organic dyes in wastewater raises significant environmental and human health concerns, owing to their high toxicity. In light of this, a novel adsorbent material with porous cryogel architecture was developed and employed for the effective removal of organic dyes from an aqueous solution. Initially, a titanium dioxide nanowire doped with zirconium HZTO was synthesized by the hydrothermal process. Subsequently, the beads (SA/HZTO) of sodium alginate and HZTO were successfully prepared through a cross-linking process, employing Ca2+ ions as the crosslinking agent. Structural analysis of SA/HZTO beads was performed using FTIR, SEM, and EDX techniques. We systematically examined the impact of different conditions, including the initial dye concentration, pH, contact time, and adsorbent dosage, on the adsorption process. Batch experiments, both in signal and binary systems, were conducted to rigorously assess the dye adsorption capabilities. Kinetic modeling revealed that the adsorption process adhered to the pseudo-second-order kinetic model. Remarkably, the prepared beads exhibited impressive adsorption capacities of 26 and 29 mg/g toward methylene blue (MB) and safranin (SF), respectively. SA/HZTO beads have demonstrated excellent adsorption properties, offering a promising avenue for the development of low-cost, efficient, and reusable adsorbent to remove dyes from wastewater.

4.
Int J Biol Macromol ; 260(Pt 1): 129464, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232892

ABSTRACT

This study focuses on the production of sulfated cellulose microfibers and nanocellulose hydrogels from native cellulose microfibers (CMF). The process involves using a combination of H2SO4 and urea, resulting in highly sulfated cellulose microfiber hydrogel (SC) with notable properties such as a sulfur content of 7.5 %, a degree of sulfation of 0.49, a surface charge content of 2.2 mmol. g-1, and a high yield of 81 %. The SC hydrogel can be easily fibrillated into sulfated nanocellulose hydrogel (S-NC) with elongated nanocellulose structures having an average diameter of 6.85 ± 3.11 nm, as determined using atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of sulfate groups on the surface of the nanocellulose material. Transparent films with good mechanical properties can be produced from both cellulose microfiber and nanocellulose hydrogels. The sulfate functionality gives the hydrogel attractive rheological properties and makes S-NC re-dispersible in water, which can be beneficial for various applications. This study demonstrates the potential of this process to address previous challenges related to nanocellulose materials production.


Subject(s)
Hydrogels , Sulfates , Hydrogels/chemistry , Water/chemistry , Cellulose/chemistry , Microscopy, Atomic Force
5.
Chemosphere ; 350: 141098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171398

ABSTRACT

To fulfill the unprecedented valorization approaches for lignocellulose, this work focuses on the potential of lignin-derived catalytic systems for bio-remediation, which are natural materials perceived to address the increased demand for eco-conscious catalyzed processes. A useful lignin-functionalized cobalt (Lig-Co) catalyst has been prepared, well-characterized and deployed for the catalyzed reducing decomposition of stable harmful organic pollutants such as methylene blue (MB) and methyl orange (MO), in simple and binary systems. The multifunctional character of lignin and the presence of various active sites can promote effectively loaded metal nanoparticles (NPs). Considerably, optimizing detoxification tests showed that the uncatalyzed use of NaBH4 as a reductive agent led to an incomplete reduction of organic contaminants over a long period of up to 65 min. Interestingly, Lig-Co catalyst exhibited a high reduction rate and turnover frequency of up to 99.23% and 24.12 min-1 for MB, respectively, while they reached 99.25% and 26.21 min-1 for MO at normal temperature. Kinetically quick catalytic reaction was also demonstrated for the hybrid system, in which the rate constant k was 0.175 s-1 and 0.165 s-1 for MB and MO, respectively, within a distinctly low reaction time of around 120 s. The reproducibility of the Lig-Co catalyst induces a desirable capacity to reduce stable dyes present simultaneously in the binary system, with 6 successive catalytic runs and over 80% of activity retained. Such robust findings underline the considerable interest in developing future lignin-mediated catalytic transformations and upscaling biomass-derived products, to meet the growing demand for sustainable and eco-friendly alternatives in various industries.


Subject(s)
Azo Compounds , Cobalt , Lignin , Lignin/chemistry , Cobalt/chemistry , Reproducibility of Results , Coloring Agents/chemistry , Catalysis
6.
Environ Pollut ; 335: 122349, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37562526

ABSTRACT

The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Purification , Polymers , Water , Adsorption , Decontamination , Water Pollutants, Chemical/chemistry , Biopolymers , Metals, Heavy/chemistry , Water Purification/methods
7.
RSC Adv ; 13(10): 6954-6965, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36865580

ABSTRACT

The current work describes the synthesis of carbonaceous composites via pyrolysis, based on CMF, extracted from Alfa fibers, and Moroccan clay ghassoul (Gh), for potential use in heavy metal removal from wastewater. Following synthesis, the carbonaceous ghassoul (ca-Gh) material was characterized using X-ray fluorescence (XRF), Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM-EDX), zeta-potential and Brunauer-Emmett-Teller (BET). The material was then used as an adsorbent for the removal of cadmium (Cd2+) from aqueous solutions. Studies were conducted into the effect of adsorbent dosage, kinetic time, initial concentration of Cd2+, temperature and also pH effect. Thermodynamic and kinetic tests demonstrated that the adsorption equilibrium was attained within 60 min allowing the determination of the adsorption capacity of the studied materials. The investigation of the adsorption kinetics also reveals that all the data could be fit by the pseudo-second-order model. The Langmuir isotherm model might fully describe the adsorption isotherms. The experimental maximum adsorption capacity was found to be 20.6 mg g-1 and 261.9 mg g-1 for Gh and ca-Gh, respectively. The thermodynamic parameters show that the adsorption of Cd2+ onto the investigated material is spontaneous and endothermic.

8.
Int J Biol Macromol ; 230: 123242, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36639085

ABSTRACT

Catalytic systems derived from lignin are emerging as quite efficient and profitable materials in many catalyzed transformations. However, these catalysts have been predominantly synthesized by carbonization. Alternatively, we prepared direct sulfonation lignin (DSL) and compared it to the carbonized-sulfonated lignin (CSL) catalyst, aiming to reveal the effects of direct functionalization of lignin on its catalytic performance and to simplify its preparation. Both catalysts were well characterized by several physicochemical techniques, and their catalytic activities were assessed by catalyzed esterification. Using CSL, the yield reached 94.11 % under the optimal conditions (60 °C, 4 h and 50 mg loading), while DSL yielded 93.97 % with only 2 h under the same conditions, which is attributed to the abundant catalytic active sites in DSL (0.62 mmol/g of SO3H against 0.39 mmol/g for CSL). Furthermore, the activation energies were found to be 21 and 16 kJ mol-1 for CSL and DSL, respectively, suggesting that esterification can occur with less energy input using DSL. Reusability showed that leaching of SO3H groups and mass loss are inherently responsible for deactivation. However, both lignin-based catalysts show good stability and can be reused for 4 successive cycles. Direct lignin functionalization can be an alternative to conventional catalyst processing.


Subject(s)
Lignin , Refuse Disposal , Lignin/chemistry , Food , Catalysis , Alkanesulfonates , Acids
9.
Int J Biol Macromol ; 226: 345-356, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36470435

ABSTRACT

Cellulose-based biopolymers have emerged as one of the most promising components to produce sustainable composites as a potential substitutes to fossil-based materials. Herein, the aim of this study is to investigate the reinforcing effect of cellulose microfibers (CMFs) and cellulose nanocrystals (CNCs), extracted from alfa fibers (Stipa tenacissima), on the properties of starch biopolymer extracted from potato. The as-extracted CMFs (D = 5.94 ± 0.96 µm), CNCs (D = 14.29 ± 2.53 nm) and starch were firstly characterized in terms of their physicochemical properties. Afterwards, CMFs and CNCs were separately dispersed in starch at different concentrations, and their reinforcing effects as well as the chemical, thermal, transparency and mechanical properties of the resulted starch-based films were evaluated. Thus, CMFs and CNCs incorporation into starch resulted in a minor impact on the films thermal stability, while a considerable impact on the transparency property was observed. In terms of mechanical properties, the addition of up to 20 wt% CMFs reduced the film's elongation but drastically increased its stiffness by 300 %. On the other hand, in the case of CNCs, a loading of 10 wt% was found to be the most effective in increasing film stiffness (by 57 %), while increasing the loading up to 20 wt% CNCs enhanced the film's ductility (strain-to-failure) by 52 %. This study showed that introduction of cellulosic fibers having different sizes into starch can produce biocomposite materials with a wide range of properties for food packaging application.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Starch/chemistry , Tensile Strength , Poaceae/metabolism , Nanoparticles/chemistry
10.
Int J Biol Macromol ; 221: 149-162, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36058399

ABSTRACT

The current study investigates for the first time the physico-chemical performances of lignins from cactus waste seeds (CWS) and spent coffee (SC) in comparison to previously isolated lignins from sugar byproducts (bagasse (SCB) and beet pulp (SBP)). In this work, lignin-phenol formaldehyde (LPF) resins were formulated using various lignin loadings (5-30 wt%), characterized and applied in the manufacturing of plywood panels. Several characterization techniques were applied to identify the chemical and morphological properties, thermal stability, and phenolic content of the extracted lignins, as well as the bonding strength and wood failure of the formulated resins. Results showed that the CWS and SC could be considered as an important source for lignin recovery with a considerable yield of 15.46 % and 27.08 % and an important hydroxyl phenolic content of 1.26 mmol/g and 1.36 mmol/g for CWS and SC, respectively. Interestingly, 20 wt% of extracted lignins in PF adhesives were the optimal formulation showing an improved modulus of elasticity (MOE) of about 3505, 3536 and 3515 N/mm2, and a higher modulus of rupture (MOR) of about 55, 55 and 56 N/mm2 for panels containing CWS, SC and SCB-lignins, respectively, over the reference panels (MOE = 3198 N/mm2 and MOR = 48 N/mm2). Additionally, formaldehyde emission from plywood remarkably decreases by up to 20 % when lignin was incorporated into the PF matrix. Herein, the treatment of the CWS and SC for the extraction of alkali lignin and its application showed a new route to produce high added-value products from underused residues.


Subject(s)
Lignin , Wood , Lignin/chemistry , Wood/chemistry , Adhesives/chemistry , Phenol/chemistry , Alkalies , Phenols/chemistry , Formaldehyde/chemistry
11.
Int J Biol Macromol ; 221: 398-415, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36063891

ABSTRACT

To obviate adverse effects from the non-biodegradability of certain polymer-based slow-release fertilizers (SRFs) and to offset higher operational costs, the use of biopolymers as coating material has recently caught interest in the research circles. The present work aims to design a sustainable coating material based on biodegradable polymers. To this end, Alfa plant was initially exploited as a viable sustainable source for the extraction of lignin (LGe), which was in turn integrated into the development of a three-dimensional cross-linked network, including methylcellulose (MC) as a matrix and citric acid (CA) as a cross-linking agent. Then, the designed coating material was applied onto Di-ammonium Phosphate (DAP) and Triple Superphosphate (TSP) water-soluble fertilizers in a rotating pan machine. Chemical, physical, and biodegradation studies have confirmed that the coating material is environmentally-friendly. Nutrients release experiments in water as well as in soil environments have proved the effectiveness of the MC and MC/LGe coating layers in delaying the nutrients discharge. Besides, the nutrients release from coated DAP and TSP lasted longer than 30 days. Furthermore, the coating film enhanced the fertilizers mechanical resistance and boosted the soil water retention capacity. The agronomic evaluation has also confirmed their remarkable potential in enhancing wheat leaf area, chlorophyll content and biomass, in addition to the roots architecture and the final fruiting efficiency. These results showed that this hybrid composite could be used as an efficient coating material to produce slow-release fertilizers with multifunctional performances.


Subject(s)
Fertilizers , Triticum , Fertilizers/analysis , Lignin , Methylcellulose , Soil , Water , Nutrients , Polymers/chemistry
12.
Int J Biol Macromol ; 219: 949-963, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-35934080

ABSTRACT

Cellulose is an interesting biopolymer offering numerous functionalization possibilities for various applications. Yet, cellulose functionalization usually involves expensive chemicals and complex processes. Here, we aim to utilize inexpensive fertilizer-grade phosphate for cellulose functionalization. Cellulose microfibers (CMF) were isolated from Giant Reed (GR) and were then phosphorylated using either a reagent-grade or a fertilizer-grade diammonium hydrogen phosphate (DAP) in the presence of urea following a water-based protocol. The effect of DAP on the phosphorylation reaction was mainly studied by conductometric titration, ICP-OES and FTIR, while further characterization was performed by SEM/EDX, TGA and XRD to investigate the morphology, composition, charge content, structure, and thermal degradation of the phosphorylated materials. It was found that cellulose phosphorylation using DAP fertilizer gave materials with the same charge content as that registered when using the reagent-grade DAP. Optimizing the reaction conditions with respect to the amount of fertilizer-grade DAP used for the phosphorylation gave high charge content (7000 mmol·g-1). The corresponding phosphorylated CMF (P-CMF) were processed into a paper and used as sorbent for methylene blue (MB) removal from aqueous solutions with different concentrations. The findings indicated that the pseudo-second-order model could be useful to assess the adsorption kinetics while the Langmuir isotherm model can suitably describe the adsorption isotherms. With fast adsorption kinetics (2-6 h), high adsorption efficiency (92-99 %) and a MB adsorption capacity of ~1200 mg·g-1 surpassing what has been reported so far for cellulose-based sorbents, the P-CMF paper holds great promises for the effective remediation of dye-contaminated wastewater effluents. Adsorption/desorption tests confirmed the reusability and regeneration of the paper with a recovery of 100 % for MB in the second cycle.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Cellulose/chemistry , Fertilizers , Hydrogen-Ion Concentration , Kinetics , Methylene Blue/chemistry , Phosphates , Phosphorylation , Urea , Wastewater/chemistry , Water , Water Pollutants, Chemical/chemistry
13.
Int J Biol Macromol ; 210: 639-653, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35513099

ABSTRACT

For many years, garlic has been used as a condiment in food and traditional medicine. However, the garlic skin, which accounts for 25% of the garlic bulk, is considered agricultural waste. In this study, cellulose nanocrystals (CNCs) and garlic extract (GE) from garlic skin were isolated and used as fillers to manufacture biocomposite films. The films were characterized in terms of UV barrier, thermal, mechanical, biodegradability, and antimicrobial activity. The chitosan-containing films and CNCs have significantly improved the films' tensile strength, Young's modulus, and elongation but decreased the film transparency compared to chitosan films. The combination of the CNCs and GE, on the other hand, slightly reduced the mechanical properties. The addition of CNCs slightly decreased the film transparency, while the addition of GE significantly improved the UV barrier properties. Thermal studies revealed that the incorporation of CNC and GE had minimal effect on the thermal stability of the chitosan films. The degradability rate of the chitosan composite films was found to be higher than that of the neat chitosan films. The antimicrobial properties of films were studied against Escherichia coli, Streptomyces griseorubens, Streptomyces alboviridis, and Staphylococcus aureus, observing that their growth was considerably inhibited by the addition of GE in composite films. Films incorporating both CNCs and GE from garlic skin hold more promise for active food packaging applications due to a combination of enhanced physical characteristics and antibacterial activity.


Subject(s)
Anti-Infective Agents , Chitosan , Garlic , Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Cellulose/chemistry , Chitosan/chemistry , Escherichia coli , Food Packaging , Nanoparticles/chemistry
14.
RSC Adv ; 12(14): 8536-8546, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35424799

ABSTRACT

In general, during the papermaking process or the production of cellulosic materials for food-packaging applications, lignin and other amorphous components are usually removed via the pulping and multilevel bleaching process to entirely separate them from the fiber. The aim of this work was to study the positive effect that can impart the residual lignin remaining in the alkali-treated fiber surface over bleached fibers to produce an alternative food-packaging cellulosic paper. Herein, cellulosic papers based on alkali-treated and bleached fibers obtained from the Alfa plant were successfully prepared using a compression process. The as-obtained papers were coated by crosslinked starch using a solvent-casting method to improve their mechanical and surface properties. The morphological and contact angle results showed that the residual lignin in the alkali-treated cellulosic papers strongly increased the interfacial adhesion by making the structure denser and more compact, resulting in an improved water resistance property over the bleached ones. On the other hand, it also promoted char formation, slowing down the burning process, resulting in better flame resistance. Additionally, the mechanical properties demonstrated that the presence of lignin contributed to the material rigidity improvement without compromising its flexibility (folding endurance). The as-developed cellulosic papers coated with crosslinked starch could be used for the production of high-quality materials for food-packaging applications using conventional industrial processes.

15.
Int J Biol Macromol ; 203: 302-311, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35104469

ABSTRACT

Cactus fruit waste seeds (CWS) are a by-product of the cactus fruit processing industry. Until now, CWS are not recoverable in any sector. The valorization of these residues may reduce their volume in the environment and transform them into valuable products. In this work, CWS have been identified for the first time as a sustainable lignocellulosic source. Cellulose microfibers (CMFs) and nanocrystals (CNCs) were successfully produced via alkali and bleaching treatments followed by sulfuric acid hydrolysis. It was found that the extracted CMFs showed an average diameter of 11 µm, crystallinity of 72%, and a yield of 25%. The as-produced CNCs exhibited a needle-like shape with a diameter of 13 ± 3 nm and length of 419 ± 48 nm, giving rise to an aspect ratio of 30.7, with a zeta potential value of - 30 mV and a charge content of sulfate groups of 287.8 mmol·kg-1. Herein, the obtained cellulosic derivatives with excellent properties from this underutilized waste can draw the attention of researchers towards CWS as a new type of biomass with virtually no hemicellulose, which could be of great interest to isolate and study the effects of how lignin interacts with cellulose.


Subject(s)
Cactaceae , Nanostructures , Cellulose/chemistry , Fruit , Nanostructures/chemistry , Seeds
16.
Waste Biomass Valorization ; 13(4): 2411-2423, 2022.
Article in English | MEDLINE | ID: mdl-35096210

ABSTRACT

In this study, Artemisia annua stem waste was identified, for the first time, as a potential natural source to produce cellulose microfibers (CMF), as well as cellulose nanocrystals (CNC) with unique functionalities by using various organic acids. The CMF extraction was carried out using alkali and bleaching treatments, while the CNC were isolated under acid hydrolysis by using sulfuric acid (S-CNC), phosphoric acid (P-CNC), and hydrochloric acid / citric acid mixture (C-CNC). The CMF and CNC physicochemical, structural, morphological, dimensional, and thermal properties were characterized. CMF with a yield of 53%, diameter of 5 to 30 µm and crystallinity of 57% were successfully obtained. In contrast, CNC showed a rod-like shape with an aspect ratio of 53, 95, and 64 and a crystallinity index of 84, 79, and 72% for S-CNC, P-CNC, and C-CNC, respectively. Results suggested that the type of acid significantly influenced the structure, morphology, and thermal stability of CNCs. Based on these results, Artemisia annua stem waste is a great candidate source for cellulose derivatives with excellent characteristics.

17.
Int J Biol Macromol ; 200: 182-192, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34995656

ABSTRACT

Enormous interest in using marine biomass as a sustainable resource for water treatment has been manifested over the past few decades. Herein, the objective was to investigate the possible use of green macroalgae (Codium tomentosum) for cellulose-based foam production through a versatile and convenient process. Macroporous cellulose monolith was prepared from cellulose hydrogel using freeze-drying process, resulting in a mechanically rigid monolith with a high swelling ratio. The as-produced spongy-like porous cellulosic material was used as bio-sorbent for wastewater treatment, particularly for removing methylene blue (MB) dye from concentrated aqueous solution. The adsorption capacity of MB was subsequently studied, and the effect of adsorption process parameters was determined in a controlled batch system. From the kinetic studies, it was found that the adsorption equilibrium was reached within 660 min. Furthermore, the analysis of the adsorption kinetics reveals that the data could be fitted by a pseudo-second order model, while the adsorption isotherm could be described by Langmuir isotherm model. The maximum adsorption capacity was found to be 454 mg/g. The findings suggested that the produced cellulose monolith could be used as a sustainable adsorbent for water treatment.


Subject(s)
Cellulose
18.
Chemosphere ; 287(Pt 4): 132453, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34610372

ABSTRACT

Tetracycline (TC) is one of the antibiotics that is found in wastewaters. TC is toxic, carcinogenic, and teratogenic. In this study, the tetracycline was removed from water by adsorption using dioxide silicon nanoparticles (SiO2 NPs) biosynthesized from the extract of Nerium oleander leaves. These nanoparticles were characterized using SEM-EDX, BET-BJH, FTIR-ATR, TEM, and XRD. The influences of various factors such as pH solution, SiO2 NPs dose, adsorption process time, initial TC concentration, and ionic strength on adsorption behaviour of TC onto SiO2 NPs were investigated. TC adsorption on SiO2 NPs could be well described in the pseudo-second-order kinetic model and followed the Langmuir isotherm model with a maximum adsorption capacity was 552.48 mg/g. At optimal conditions, the experimental adsorption results indicated that the SiO2 NPs adsorbed 98.62% of TC. The removal of TC using SiO2 NPs was 99.56% at conditions (SiO2 NPs dose = 0.25 g/L, C0 = 25 mg/L, and t = 40 min) based on Box-Behnken design (BBD) combined with response surface methodology (RSM) modelling. Electrostatic interaction governs the adsorption mechanism is attributed. The reusability of SiO2 NPs was tested, and the performance adsorption was 85.36% after the five cycles. The synthesized SiO2 NPs as promising adsorbent has a potential application for antibiotics removal from wastewaters.


Subject(s)
Nanoparticles , Nerium , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Hydrogen-Ion Concentration , Kinetics , Plant Extracts , Plant Leaves/chemistry , Silicon Dioxide , Tetracycline , Water Pollutants, Chemical/analysis
19.
Polymers (Basel) ; 13(19)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34641259

ABSTRACT

In this work, laminated polyester thermoset composites based on palm tree fibers extracted from palms leaflets and glass mats fibers were manufactured to develop hybrid compositions with good mechanical properties; the mixture of fibers was elaborated to not exceed 25 vol.%. Samples were prepared with a resin transfer molding (RTM) method and mechanically characterized using tensile and flexural, hardness, and impact tests, and ultrasonic waves as a non-destructive technique. The water sorption of these composite materials was carried out in addition to solar irradiation aging for approximately 300 days to predict the applicability and the long-term performance of the manufactured composites. Results have shown that the use of glass fibers significantly increased all properties; however, an optimum combination of the mixture could be interesting and could be developed with less glass sheet and more natural fibers, which is the goal of this study. On the other hand, exposure to natural sunlight deteriorated the mechanical resistance of the neat resin after only 60 days, while the composites kept high mechanical resistance for 365 days of exposure.

20.
Int J Biol Macromol ; 189: 1029-1042, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34411612

ABSTRACT

Effective fertilizers management is essential for sustainable agricultural practices. One way to improve agronomic practices is by using slow-release fertilizers (SRF) that have shown interesting role in optimizing nutrients availability for plants growth. Considering the current ecological concerns, coated SRF using ecofriendly materials continue to attract great attention. In this context, novel waterborne and biodegradable coating nanocomposite formulations were elaborated from cellulose nanocrystals (CNC)-filled poly (vinyl alcohol) (PVA) for slow release NPK fertilizer with water retention property. CNC were extracted from hemp stalks using sulfuric acid hydrolysis process and their physico-chemical characteristics were investigated. CNC with various weight loadings (6, 10, 14.5 wt%) were incorporated into PVA polymer via solvent mixing method to produce viscous coating nanocomposite formulations with moderated shear viscosity. Uniform PVA@CNC coating microlayer was applied on the surface of NPK fertilizer granules in Wurster chamber of a fluidized bed dryer at controlled spraying and drying parameters. The nitrogen, phosphorus and potassium release profiles from coated NPK fertilizer were determined in water and soil. It was found that the coating materials extended the N-P-K nutrients release time from 3 days for uncoated fertilizer to 10 and 30 days for neat PVA- and CNC/PVA-coated fertilizer in soil medium, indicating the positive role of the presence of CNC in the PVA-based coatings. The morphology, coating rate and crushing strength of the as-prepared coated products were investigated in addition to their effect on water holding capacity and water retention of the soil. Enhanced crushing strength and water retention with a positive effect on the soil moisture were observed after coating NPK fertilizer, mainly with high CNC content (14.5 wt%). Therefore, these proposed nanocomposite coating materials showed a great potential for producing a new class of SRF with high nutrients use efficiency and water retention capacity, which could be beneficial to sustainable crop production.


Subject(s)
Cellulose/chemistry , Fertilizers , Nanocomposites/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Nanocomposites/ultrastructure , Nanoparticles/ultrastructure , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Soil/chemistry , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...