Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(47): 32974, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38025880

ABSTRACT

Expression of Concern for 'Statistical optimization of photo-induced biofabrication of silver nanoparticles using the cell extract of Oscillatoria limnetica: insight on characterization and antioxidant potentiality' by Rasha A. Abo-Elmagd et al., RSC Adv., 2020, 10, 44232-44246, DOI: https://doi.org/10.1039/D0RA08206F.

2.
Sci Rep ; 12(1): 20378, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36437282

ABSTRACT

Over the last decade, an extensive range of consumer products containing manufactured silver nanoparticles (AgNPs) have been progressively used. The unfitting usage and discharge of these materials can enable passage of AgNPs into the aquatic ecosystem causing prospective toxicological consequence. The present study shed new lights on the phycotoxicity of small (8.47-17.66 nm) and stable Oscillatoria reduced gelatin-capped silver nanoparticles (OG-AgNPs) fabricated using a completely green synthetic technique. In this work, estimating of the possible toxic effects of OG-AgNPs on two freshwater microalgae Chlorella vulgaris and Chlorella minutissima was carried. This study found that, the growth of cells and photosynthetic pigment inhibitory effects of OG-AgNPs exhibit a significant increase with increasing time and concentration compared to control. Based on the IC50 value C. vulgaris (3.705 µg/mL) was found to be more sensitive to OG-AgNPs than C. minutissima (5.8 µg/mL). This study revealed that OG-AgNPs exhibit potent phycotoxic effect against Chlorella species. Finally, the negative effect of OG-AgNPs on aquatic algae and these modifications might have severe effects on structure and function of aquatic ecosystems. Besides, the biosynthesized OG-AgNPs showed a catalytic activity in the reduction of hydrogen peroxide, one of the reactive oxygen species that represent a major threat to biological systems. This method pretends an auspicious non-skill dependent technique with a good sensitivity for determination of H2O2 concentration, particularly at trace ppm level for applying in numerous domains such as medical and industrial processes.


Subject(s)
Chlorella vulgaris , Metal Nanoparticles , Oscillatoria , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Gelatin/pharmacology , Ecosystem , Hydrogen Peroxide/pharmacology , Prospective Studies
3.
RSC Adv ; 10(72): 44232-44246, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-35517140

ABSTRACT

Silver nanoparticles were successfully fabricated through a very simple, rapid, one-step photo-induced green approach. The formation of silver nanoparticles was accomplished using the bioactive compounds in the aqueous extract of fresh Oscillatoria limnetica biomass, which acted as a reducing and capping agent at the same time. The biosynthesis of Oscillatoria-silver nanoparticles (O-AgNPs) was investigated under the influence of different light intensities 57.75, 75.90 and 1276.51 µmol m-2 s-1 (bright sunlight). UV-Vis (UV) and Fourier transform infrared (FT-IR) spectroscopy were applied to approve the synthesis of AgNPs. Further, the synthesis process under the exposure to sunlight was adjusted via utilizing one factor at a time, and 0.5 mM AgNO3 concentration, 5 mL O. limnetica solution, pH 6.7 and 30 min sunlight (1276.51 µmol m-2 s-1) were applied. Furthermore, the central composite design (CCD) was applied to boost the biosynthesis process of O-AgNPs (manufactured at light intensity 75.90 µmol m-2 s-1). The maximum production of O-AgNPs was attained with 4 detected variables: initial pH level (6.7), AgNO3 concentration (0.3 mM), O. limnetica extract concentration (3.50 mL) and incubation time (48 h). Moreover, TEM, in addition to SEM, images exposed that the biosynthesized AgNPs were quasi-spherical in shape with a small monodisperse nature, and the size range was between 6.98-23.48 nm in the case of light-induced synthesis (75.90 µmol m-2 s-1) and 11.58-22.31 nm with sunlight (1276.51 µmol m-2 s-1).

4.
Sci Rep ; 9(1): 13071, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506473

ABSTRACT

Using aqueous cyanobacterial extracts in the synthesis of silver nanoparticle is looked as green, ecofriendly, low priced biotechnology that gives advancement over both chemical and physical methods. In the current study, an aqueous extract of Oscillatoria limnetica fresh biomass was used for the green synthesis of Ag-NPs, since O. limnetica extract plays a dual part in both reducing and stabilizing Oscillatoria-silver nanoparticles (O-AgNPs). The UV-Visible absorption spectrum, Fourier transforms infrared (FT-IR), transmission electron microscopy (TEM) and scanning electron microscope (SEM) were achieved for confirming and characterizing the biosynthesized O-AgNPs. TEM images detected the quasi-spherical Ag-NPs shape with diverse size ranged within 3.30-17.97 nm. FT-IR analysis demonstrated the presence of free amino groups in addition to sulfur containing amino acid derivatives acting as stabilizing agents as well as the presence of either sulfur or phosphorus functional groups which possibly attaches silver. In this study, synthesized Ag-NPs exhibited strong antibacterial activity against multidrug-resistant bacteria (Escherichia coli and Bacillus cereus) as well as cytotoxic effects against both human breast (MCF-7) cell line giving IC50 (6.147 µg/ml) and human colon cancer (HCT-116) cell line giving IC50 (5.369 µg/ml). Hemolytic activity of Ag-NPs was investigated and confirmed as being non- toxic to human RBCs in low concentrations.


Subject(s)
Metal Nanoparticles , Oscillatoria/metabolism , Silver/metabolism , Hemolysis , Humans , Hydrogen-Ion Concentration , Metal Nanoparticles/ultrastructure , Oscillatoria/ultrastructure , Silver Nitrate/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...