Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 96(2): 375-397, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29390120

ABSTRACT

The objective of this study was to develop and validate a customized cost-effective single nucleotide polymorphism (SNP) panel for genetic improvement of feed efficiency in beef cattle. The SNPs identified in previous association studies and through extensive analysis of candidate genomic regions and genes, were screened for their functional impact and allele frequency in Angus and Hereford breeds used as validation candidates for the panel. Association analyses were performed on genotypes of 159 SNPs from new samples of Angus (n = 160), Hereford (n = 329), and Angus-Hereford crossbred (n = 382) cattle using allele substitution and genotypic models in ASReml. Genomic heritabilities were estimated for feed efficiency traits using the full set of SNPs, SNPs associated with at least one of the traits (at P ≤ 0.05 and P < 0.10), as well as the Illumina bovine 50K representing a widely used commercial genotyping panel. A total of 63 SNPs within 43 genes showed association (P ≤ 0.05) with at least one trait. The minor alleles of SNPs located in the GHR and CAST genes were associated with decreasing effects on residual feed intake (RFI) and/or RFI adjusted for backfat (RFIf), whereas minor alleles of SNPs within MKI67 gene were associated with increasing effects on RFI and RFIf. Additionally, the minor allele of rs137400016 SNP within CNTFR was associated with increasing average daily gain (ADG). The SNPs genotypes within UMPS, SMARCAL, CCSER1, and LMCD1 genes showed significant over-dominance effects whereas other SNPs located in SMARCAL1, ANXA2, CACNA1G, and PHYHIPL genes showed additive effects on RFI and RFIf. Gene enrichment analysis indicated that gland development, as well as ion and cation transport are important physiological mechanisms contributing to variation in feed efficiency traits. The study revealed the effect of the Jak-STAT signaling pathway on feed efficiency through the CNTFR, OSMR, and GHR genes. Genomic heritability using the 63 significant (P ≤ 0.05) SNPs was 0.09, 0.09, 0.13, 0.05, 0.05, and 0.07 for ADG, dry matter intake, midpoint metabolic weight, RFI, RFIf, and backfat, respectively. These SNPs contributed to genetic variation in the studied traits and thus can potentially be used or tested to generate cost-effective molecular breeding values for feed efficiency in beef cattle.


Subject(s)
Cattle/genetics , Energy Metabolism/genetics , Polymorphism, Single Nucleotide/genetics , Animal Feed , Animals , Body Weight/genetics , Cattle/physiology , Eating/genetics , Energy Metabolism/physiology , Genome , Genomics , Genotype , Phenotype
2.
J Dairy Sci ; 100(2): 1246-1258, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27889128

ABSTRACT

Female fertility in Holstein cattle can decline when intense genetic selection is placed on milk production. One approach to improving fertility is to identify the genomic regions and variants affecting fertility traits and then incorporate this knowledge into selection decisions. The objectives of this study were to identify or refine the positions of the genomic regions associated with lactation persistency, female fertility traits (age at first service, cow first service to conception, heifer and cow nonreturn rates), longevity traits (herd life, indirect herd life, and direct herd life), and lifetime profit index in the North American Holstein dairy cattle population. A genome-wide association study was performed for each trait, using a single SNP (single nucleotide polymorphism) regression mixed linear model and imputed high-density panel (777k) genotypes. No associations were identified for fertility traits. Several peak regions were detected for lifetime profit index, lactation persistency, and longevity. The results overlap with previous findings and identify some novel regions for lactation persistency. Previously proposed causative and candidate genes supported by this work include DGAT1, GRINA, and CPSF1, whereas new candidate genes are SLC2A4RG and THRB. Thus, the chromosomal regions identified in this study not only confirm several previous findings but also highlight new regions that may contribute to genetic variation in lactation persistency and longevity-associated traits in dairy cattle.


Subject(s)
Genome-Wide Association Study/veterinary , Longevity , Animals , Cattle , Female , Fertility/genetics , Lactation/genetics , Phenotype
3.
Anim Genet ; 46(5): 560-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26360329

ABSTRACT

Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in cattle that results in substantial financial losses to the cattle industry worldwide. Given that susceptibility to MAP infection is determined in part by genetics, marker-assisted selection may help in the breeding of animals that are more resistant to MAP infection. The toll-like receptor 4 gene (TLR4) was selected as a potential candidate gene because of its role in innate immunity and its involvement in MAP recognition and infection. The objective of this study, therefore, was to identify associations between TLR4 polymorphisms and susceptibility to MAP infection in Canadian Holstein cows. Two biologically relevant SNPs, including c.-226G>C in the 5'-untranslated region and the non-synonymous SNP c.2021C>T in the potential TIR domain, were selected for an association analysis with MAP infection status in 409 Canadian Holsteins. The haplotype C-T from these combined SNPs yielded significant association with susceptibility to MAP infection, supporting the involvement of TLR4 in susceptibility to MAP infection.


Subject(s)
Cattle Diseases/genetics , Genetic Predisposition to Disease , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/genetics , Toll-Like Receptor 4/genetics , Animals , Canada , Cattle , Cattle Diseases/microbiology , Female , Gene Frequency , Genetic Markers , Genotype , Haplotypes , Linkage Disequilibrium , Models, Genetic , Polymorphism, Genetic , Polymorphism, Single Nucleotide
4.
J Anim Sci ; 91(6): 2512-29, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23508024

ABSTRACT

Discovery of genetic mutations that have a significant association with economically important traits would benefit beef cattle breeders. Objectives were to identify with an in silico approach new SNP in 8 genes involved in digestive function and metabolic processes and to examine the associations between the identified SNP and feed efficiency and performance traits. The association between SNP and daily DMI, ADG, midpoint metabolic weight (MMWT), residual feed intake (RFI), and feed conversion ratio (FCR; the ratio of average daily DMI to ADG) was tested in discovery and validation populations using a univariate mixed-inheritance animal model fitted in ASReml. Substitution effect of the T allele of SNP rs41256901 in protease, serine, 2 (trypsin 2; PRSS2) was associated with FCR (-0.293 ± 0.08 kg DMI kg(-1) BW gain; P < 0.001) and RFI (-0.199 ± 0.08 kg; P < 0.01) and although not significant in the validation population, the phase of association remained. In the cholecystokinin B receptor (CCKBR) gene, genotypes in rs42670351 were associated with RFI (P < 0.05) whereas genotypes in rs42670352 were associated with RFI (P = 0.002) and DMI (P < 0.05). Substitution of the G allele in rs42670352 was associated with DMI (-0.236 ± 0.12 kg; P = 0.055) and RFI (-0.175 ± 0.09 kg; P = 0.05). Substitution of the G allele of SNP rs42670353 was associated with ADG (0.043 ± 0.02 kg/d; P < 0.01) and FCR (0.114 ± 0.05 kg BW gain kg(-1) DMI; P < 0.05). In the validation dataset, SNP rs42670352 in gene CCKBR was significant for RFI and DMI and had the same phase of associations; SNP rs42670353 was significantly associated with FCR with same phase of association and the C allele in SNP rs42670351 was validated as decreasing DMI, RFI, and FCR. Substituting the G allele of SNP rs42670352 in CCKBR2 was associated with decreasing DMI and RFI in the validation study. New SNP were reported in genes PRSS2 and CCKBR, being associated with feed efficiency and performance traits in beef cattle. The association between these SNP with fertility, carcass, and meat quality traits must still be tested.


Subject(s)
Cattle/physiology , Digestion , Polymorphism, Single Nucleotide , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Cattle/genetics , Cattle/growth & development , Computer Simulation , Female , Genotype , Male , Models, Biological , Phenotype
5.
J Anim Sci ; 90(12): 4441-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22952356

ABSTRACT

Four crossbred steers (average BW = 478 ± 33 kg) were used in a 4 × 4 Latin square design to determine the effects of dietary concentration of dry corn distillers grains plus solubles (DDGS) in whole corn-based finishing diets on total tract digestion and nutrient balance and excretion. The DDGS were fed at 0% (control), 16.7%, 33.3%, and 50% of dietary DM. All diets contained 10% (DM basis) alfalfa/grass haylage and were formulated to meet or exceed the estimated requirements for CP. Steers were fed the experimental diets ad libitum for a 14-d adaptation period followed by a 5-d period for fecal and urine collection. Increasing concentration of DDGS in diets from 0 to 50% of DM linearly decreased (P < 0.05) total tract DM and starch digestibility (from 77.8 to 72.9%, and 89.2 to 81.5%, respectively). Daily N and P intakes linearly increased (P = 0.06 and P = 0.01, respectively) with increasing DDGS concentration. Fecal and urinary N, P, S, Mg, and K excretion linearly increased (P < 0.05) with increasing DDGS concentration; however, Se and Na excretion did not differ (P > 0.38) among treatments. Retention (g/d; intake minus urinary and fecal excretion) of N did not differ (P > 0.16) among treatments. Retention of P tended (P = 0.07) to linearly increase and retention of S (g/d) linearly increased (P = 0.004), with increasing DDGS concentration. There were no effects (P > 0.16) of dietary treatment on digestion and retention of Se, Mg, K, and Na. Plasma P and S concentrations increased (P = 0.03 and 0.01, respectively) with increasing DDGS concentration. These data indicate that feeding DDGS up to 50% of dietary DM in whole corn grain-based finishing diets does not have a negative effect on nutrient retention but decreases digestibility. Total excretion of N, P, Ca, Mg, S, and K increased as DDGS concentration increased.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Digestion/physiology , Zea mays/chemistry , Animal Nutritional Physiological Phenomena , Animals , Cattle/urine , Feces/chemistry , Magnesium/metabolism , Male , Medicago sativa , Phosphorus/blood , Phosphorus/metabolism , Poaceae , Potassium/metabolism , Selenium/metabolism , Sulfur/blood , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...