Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Poult Sci ; 101(11): 102154, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182847

ABSTRACT

Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) leads to impaired broiler growth performance and significant economic losses worldwide. The utilization of essential oils (EOs) as natural alternatives to antibiotics to control CRD outbreaks is not completely clarified yet. Thus, we investigated the effect of a commercial EOs mixture (toldin CRD), in comparison to tilmicosin antibiotic, on the clinical observations, growth performance, immunity, digestive enzymes, gut barrier functions, and bacterial loads in broilers experimentally infected with MG. A total of 400 one-day-old broiler chicks were assigned into four groups; negative control (NC), positive control (PC), tilmicosin, and toldin CRD treated groups. All groups except NC were experimentally infected with MG at 14 d of age. Our data showed that birds treated with toldin CRD showed significant enhancement in the body weight gain (BWG) and feed conversion ratio (FCR) (P = 0.001 each) over the whole experimental period. Likely, improved digestibility and intestinal barrier functions in the toldin CRD treated group was evidenced by the significant upregulation (P < 0.05) of cholecystokinin (CCK), alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP), junctional adhesion molecule-2 (JAM-2), occludin, and mucin-2 (MUC-2) genes. Moreover, toldin CRD exhibited immunostimulant and ant-inflammatory activities via significant downregulation (P < 0.05) of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6 genes, significant reduction of lysozyme (LYZ), myeloperoxidase (MPO), and nitric oxide (NO) levels (P = 0.03, 0.02, and 0.001, respectively) and significant increase in the immunoglobulin G (IgG) level (P = 0.03). Notably, immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR) results showed prominent reductions (P < 0.05) in the levels of MG antigens and MG loads in the toldin CRD treated group, which were evidenced by relieving the clinical picture of MG experimental infection. In conclusion, we recommend the utilization of toldin CRD as a potential candidate for controlling MG infection in broiler chickens.


Subject(s)
Mycoplasma Infections , Mycoplasma gallisepticum , Poultry Diseases , Animals , Chickens , Poultry Diseases/microbiology , Adjuvants, Immunologic/pharmacology , Mycoplasma Infections/drug therapy , Mycoplasma Infections/veterinary , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Diet/veterinary , Animal Feed/analysis
2.
Infect Drug Resist ; 13: 351-362, 2020.
Article in English | MEDLINE | ID: mdl-32104007

ABSTRACT

BACKGROUND AND AIM: Nanosized inorganic antibacterial materials have received increasing attention in recent years. The present study aimed to determine the antimicrobial activity of silver (Ag) and zinc oxide (ZnO) nanoparticles alone and in combination with antibiotics against reference strains of pathogenic microorganisms as Staphylococcus aureus (Staph. aureus), Salmonella enterica subsp. Bukuru, Escherichia coli (E.coli) and Candida albicans ( C. albicans). METHODS: The antimicrobial effect of metal-nanoparticles (AgNPs and ZnONPS) and in combination with antibiotics was studied using the normal disc-diffusion method. RESULTS: Both AgNPs and ZnONPs had increased antibacterial activity with an increase in their concentration against Gram-positive bacterium (Staph. aureus), Gram-negative bacteria (E. coli and Salmonella spp) and no effect on C. albicans. The synergistic effect of antibiotics (azithromycin, cefotaxime, cefuroxime, fosfomycin and chloramphenicol) against E. coli was significantly increased in the presence of AgNPs compared to antibiotic only. However, all antibiotics had a synergistic effect in the presence of AgNps against Salmonella spp. On the other hand, the antibacterial action of AgNPs with oxacillin and neomycin antibiotics against Staph. aureus was significantly decreased in comparison with antibiotics only. The synergistic effect of antibiotics (azithromycin, oxacillin, cefotaxime, cefuroxime, fosfomycin and oxytetracycline) against E. coli was significantly increased in presence of ZnONPs compared to antibiotic only and also the synergistic effect of antibiotics (azithromycin, cefotaxime, cefuroxime, fosfomycin, chloramphenicol and oxytetracycline) against Staph. aureus was significantly increased in the presence of ZnONPs compared to antibiotics only. On the other hand, most antibiotics had an antagonistic effect in presence of ZnONps against Salmonella spp. CONCLUSION: AgNPs and ZnONPs demonstrate a good synergistic effect with antibiotics and this may open the door for a future combination therapy against pathogenic bacteria.

4.
Poult Sci ; 98(12): 6281-6288, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31579902

ABSTRACT

Among many avian mycoplasmas, Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are recognized as the main etiological agents of respiratory diseases and infectious synovitis in chickens and turkeys causing tremendous economic losses worldwide. Therefore, proper treatment is promoted for the control of these diseases. This study was the first in Egypt to evaluate the in vitro efficacy of various antimicrobials against field MG and MS isolates recovered from chicken and turkey flocks using both conventional broth microdilution and quantitative real-time polymerase chain reaction assays. Totally, 47 mycoplasma isolates were recovered from 160 collected tracheal samples (29.4%). Of these, 44 MG (27.5%) and 3 MS (1.9%) were identified using conventional and molecular assays. The in vitro susceptibilities of 4 representative mycoplasma field isolates (3 MG and one MS) to 8 antibiotics and 4 essential oils were investigated. The tested isolates showed various susceptibilities to tested antimicrobials. Toldin CRD, followed by clove, cumin, and cinnamon oils were effective against both MG and MS clinical isolates with minimum inhibitory concentration (MIC) values ranging from 0.49 to 15.63 µg/mL. Similarly, tylvalosin was the most active antibiotic against MG and MS isolates with the lowest MIC values (0.015 to 0.03 µg/mL). DNA loads of both MG mgc2 and MS vlhA genes were markedly decreased upon treatment with majority of the tested antimicrobials confirming their effectiveness as was also evaluated by conventional MIC results. In conclusion, Toldin CRD and tylvalosin were found to be the most effective antimicrobials in this study. This finding highlights the importance of using these antimicrobials in controlling mycoplasma infections in chickens and turkeys.


Subject(s)
Anti-Infective Agents/pharmacology , Chickens , Mycoplasma Infections/veterinary , Mycoplasma gallisepticum/drug effects , Mycoplasma synoviae/drug effects , Poultry Diseases/drug therapy , Turkeys , Animals , Egypt , Microbial Sensitivity Tests/veterinary , Mycoplasma Infections/drug therapy , Mycoplasma Infections/microbiology , Poultry Diseases/microbiology
5.
Front Microbiol ; 9: 2653, 2018.
Article in English | MEDLINE | ID: mdl-30455678

ABSTRACT

Ground poultry is marketed as a healthier alternative to ground beef despite the fact that poultry is a major source of foodborne Salmonella. The objectives of this study were to determine the prevalence of Salmonella in Oklahoma retail ground poultry and to characterize representative isolates by serotyping, antimicrobial resistance, PFGE patterns, and large plasmid profiling. A total of 199 retail ground poultry samples (150 ground turkey and 49 ground chicken) were investigated. The overall prevalence of Salmonella in ground poultry was 41% (82/199), and the incidence in conventional samples (47%, 66/141) was higher than in organic samples (27%, 16/58). The prevalence of Salmonella in organic ground chicken and organic ground turkey was 33% (3/9) and 26% (13/49), respectively. Twenty six Salmonella isolates (19 conventional and 7 organic) were chosen for further characterization. The following six serotypes and number of isolates per serotype were identified as follows: Tennessee, 8; Saintpaul, 4; Senftenberg, 4; Anatum, 4 (one was Anatum_var._15+); Ouakam, 3; and Enteritidis, 3. Resistance to 16 tested antimicrobials was as follows: gentamycin, 100% (26/26); ceftiofur, 100% (26/26); amoxicillin/clavulanic acid, 96% (25/26); streptomycin, 92% (24/26); kanamycin, 88% (23/26); ampicillin, 85% (22/26); cephalothin, 81% (21/26); tetracycline, 35% (9/26); sulfisoxazole, 27% (7/26); nalidixic acid, 15% (4/26); and cefoxitin, 15% (4/26). All isolates were susceptible to amikacin, chloramphenicol, ceftriaxone, and trimethoprim/sulfamethoxazole. All screened isolates were multidrug resistant (MDR) and showed resistance to 4-10 antimicrobials; isolates from organic sources showed resistance to 5-7 antimicrobials. PFGE was successful in clustering the Salmonella isolates into distinct clusters that each represented one serotype. PFGE was also used to investigate the presence of large plasmids using S1 nuclease digestion. A total of 8/26 (31%) Salmonella isolates contained a ∼100 Kb plasmid that was present in all Anatum and Ouakam isolates. In conclusion, the presence of multidrug resistant Salmonella with various serotypes, PFGE profiles, and large plasmids in ground poultry stresses the importance of seeking novel interventions to reduce the risk of this foodborne pathogen. Multidrug resistance (MDR) is considered a high additional risk and continued surveillance at the retail level could minimize the risk for the consumer.

6.
Saudi J Biol Sci ; 25(2): 195-197, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29472764

ABSTRACT

Escherichia coli is a recognized zoonotic food-borne pathogen; however, the use of polymerase chain reaction (PCR) in the underdeveloped countries to differentiate pathogenic from non-pathogenic E. coli is a problematic issue. Our grail was to assess the phenotypic virulence markers motility, hemolysin, congo red agar, embryo lethality assay and serum resistance for pathogenic E. coli (PEC) correlated to PCR tests which is currently used world-wide to evaluate the PEC. The 448 strains of Escherichia coli that were isolated from different sources, were characterized for phenotypic virulence factors such as motility, hemolysin, Congo red binding, Embryo Lethality assay (ELA) and serum resistance, as well as antibiotic susceptibility using disc diffusion method to 23 antibiotics. Results exhibited 100% motility and Congo red binding, 97.1% for hemolysin production and 90.2% in the ELA. As a result, we were able to hypothetically conclude that the aforementioned virulence markers are plain, straightforward, economical, rapid, more dynamic, uncomplicated methodology, duplicatable and cost next to nothing when compared to the molecular PCR. Their implementation in a diagnostic microbiology laboratory for vetting is a rewarding task in the underdeveloped countries. It augments endeavors to minimize the use of PCR in our investigations especially during epidemiological and outbreak investigations of PEC.

7.
Front Microbiol ; 7: 1846, 2016.
Article in English | MEDLINE | ID: mdl-27920760

ABSTRACT

The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius, and S. lentus). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, ß-lactams, macrolides, lincosamides, and streptogramin B [MLS(B)] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance-determining-regions, the identification of MRSA and MR-CNS from retail chicken meat in Egypt. In addition, these isolates might indicate the promulgation of methicillin, oxacillin and vancomycin resistance in the community and imply food safety hazards.

8.
BMC Microbiol ; 16(1): 263, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27821054

ABSTRACT

BACKGROUND: One of the foodborne pathogens is Listeria monocytogenes, which causes serious invasive illness in elderly and immunocompromised patients, pregnant women, newborns and infants ranking second after salmonellosis because of its high case fatality rate. Listerial cow mastitis marked by abnormal milk, increased cell counts and reduced production has not been reported. Therefore, apparently healthy cows can be reservoirs of L. monocytogenes. A number of 203 udder milk samples from apparently healthy animals (buffalo, n = 100; cow, n = 103) were collected and tested for Listeria. Isolated colonies on the PALCAM agar were Listeria species confirmed according to their biochemical and the Christie-Atkins-Munch-Petersen (CAMP) reactions. The Listeria species pathogenicity of was tested by phosphatidylinositol-specific phospholipase C, DL-alanine-ß-naphthylamide HCl, Dalanine-p-nitroanilide tests, chick embryo, mice inoculation tests, Vero cell cytotoxicity and biofilm formation. The virulence-associated genes, hlyA, plcB, actA and iap associated with Listeria were molecularly assayed. RESULTS: The 17 isolated Listeria spp. represented a prevalence rate of 8.4 %. Of these 3 (1.4 %), 2 (1 %), 5 (2.5 %), 4 (2 %) and 3 (1.5 %) were confirmed as L. monocytogenes, L. innocua, L. welshimeri, L. seelegeri, respectively. While the L. monocytogenes isolate displayed all the four virulence-associated genes, L. seelegeri carried the hlyA gene only. The L. monocytogenes had a strong in vitro affinity to form a biofilm, in particular serotype 4 which is associated with human infections. L. monocytogenes showed resistance for 9/27 antibiotics. CONCLUSIONS: The biofilm forming capability of the Listeria spps. makes them particularly successful in colonizing surfaces within the host thus being responsible for persistence infections and due to their antimicrobial resistant phenotype that this structure confers. In addition, strains belonging to serotypes associated with human infections and characterized by pathogenic potential (serotype 4) are capable to persist within the processing plants forming biofilm and thus being a medical hazard.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms , Drug Resistance, Bacterial , Listeria/drug effects , Listeria/pathogenicity , Milk/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cattle , Listeria/classification , Listeria/isolation & purification , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Genome Announc ; 4(1)2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26798110

ABSTRACT

In this report, we announce the first whole-genome sequencing of Salmonella enterica subsp. enterica serovar Ouakam strain GNT-01, isolated from ground turkey retail meat. The strain has a chromosome of 5,088,451 bp long, with a G+C content of 52.3%, and a plasmid of 109,715 bp.

10.
Genome Announc ; 4(1)2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26798111

ABSTRACT

The complete genome sequences of two isolates of Salmonella enterica serovars Anatum and Anatum var. 15+ revealed the presence of two plasmids of 112 kb and 3 kb in size in each. The chromosome of Salmonella Anatum (4.83 Mb) was slightly smaller than that of Salmonella Anatum var. 15+ (4.88 Mb).

SELECTION OF CITATIONS
SEARCH DETAIL
...