Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Head Neck Tumor Chall (2022) ; 13626: 1-30, 2023.
Article in English | MEDLINE | ID: mdl-37195050

ABSTRACT

This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.

2.
medRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205359

ABSTRACT

Objectives: We aim to characterize the serial quantitative apparent diffusion coefficient (ADC) changes of the target disease volume using diffusion-weighted imaging (DWI) acquired weekly during radiation therapy (RT) on a 1.5T MR-Linac and correlate these changes with tumor response and oncologic outcomes for head and neck squamous cell carcinoma (HNSCC) patients as part of a programmatic R-IDEAL biomarker characterization effort. Methods: Thirty patients with pathologically confirmed HNSCC who received curative-intent RT at the University of Texas MD Anderson Cancer Center, were included in this prospective study. Baseline and weekly Magnetic resonance imaging (MRI) (weeks 1-6) were obtained, and various ADC parameters (mean, 5 th , 10 th , 20 th , 30 th , 40 th , 50 th , 60 th , 70 th , 80 th , 90 th and 95 th percentile) were extracted from the target regions of interest (ROIs). Baseline and weekly ADC parameters were correlated with response during RT, loco-regional control, and the development of recurrence using the Mann-Whitney U test. The Wilcoxon signed-rank test was used to compare the weekly ADC versus baseline values. Weekly volumetric changes (Δvolume) for each ROI were correlated with ΔADC using Spearman's Rho test. Recursive partitioning analysis (RPA) was performed to identify the optimal ΔADC threshold associated with different oncologic outcomes. Results: There was an overall significant rise in all ADC parameters during different time points of RT compared to baseline values for both gross primary disease volume (GTV-P) and gross nodal disease volumes (GTV-N). The increased ADC values for GTV-P were statistically significant only for primary tumors achieving complete remission (CR) during RT. RPA identified GTV-P ΔADC 5 th percentile >13% at the 3 rd week of RT as the most significant parameter associated with CR for primary tumor during RT (p <0.001). Baseline ADC parameters for GTV-P and GTV-N didn't significantly correlate with response to RT or other oncologic outcomes. There was a significant decrease in residual volume of both GTV-P & GTV-N throughout the course of RT. Additionally, a significant negative correlation between mean ΔADC and Δvolume for GTV-P at the 3 rd and 4 th week of RT was detected (r = -0.39, p = 0.044 & r = -0.45, p = 0.019, respectively). Conclusion: Assessment of ADC kinetics at regular intervals throughout RT seems to be correlated with RT response. Further studies with larger cohorts and multi-institutional data are needed for validation of ΔADC as a model for prediction of response to RT.

3.
Radiother Oncol ; 183: 109641, 2023 06.
Article in English | MEDLINE | ID: mdl-36990394

ABSTRACT

PURPOSE: To determine DWI parameters associated with tumor response and oncologic outcomes in head and neck (HNC) patients treated with radiotherapy (RT). METHODS: HNC patients in a prospective study were included. Patients had MRIs pre-, mid-, and post-RT completion. We used T2-weighted sequences for tumor segmentation which were co-registered to respective DWIs for extraction of apparent diffusion coefficient (ADC) measurements. Treatment response was assessed at mid- and post-RT and was defined as: complete response (CR) vs. non-complete response (non-CR). The Mann-Whitney U test was used to compare ADC between CR and non-CR. Recursive partitioning analysis (RPA) was performed to identify ADC threshold associated with relapse. Cox proportional hazards models were done for clinical vs. clinical and imaging parameters and internal validation was done using bootstrapping technique. RESULTS: Eighty-one patients were included. Median follow-up was 31 months. For patients with post-RT CR, there was a significant increase in mean ADC at mid-RT compared to baseline ((1.8 ± 0.29) × 10-3 mm2/s vs. (1.37 ± 0.22) × 10-3 mm2/s, p < 0.0001), while patients with non-CR had no significant increase (p > 0.05). RPA identified GTV-P delta (Δ)ADCmean < 7% at mid-RT as the most significant parameter associated with worse LC and RFS (p = 0.01). Uni- and multi-variable analysis showed that GTV-P ΔADCmean at mid-RT ≥ 7% was significantly associated with better LC and RFS. The addition of ΔADCmean significantly improved the c-indices of LC and RFS models compared with standard clinical variables (0.85 vs. 0.77 and 0.74 vs. 0.68 for LC and RFS, respectively, p < 0.0001 for both). CONCLUSION: ΔADCmean at mid-RT is a strong predictor of oncologic outcomes in HNC. Patients with no significant increase of primary tumor ADC at mid-RT are at high risk of disease relapse.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Humans , Prospective Studies , Neoplasm Recurrence, Local/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Magnetic Resonance Imaging , Biomarkers
4.
Front Oncol ; 12: 975902, 2022.
Article in English | MEDLINE | ID: mdl-36425548

ABSTRACT

Background: Quick magnetic resonance imaging (MRI) scans with low contrast-to-noise ratio are typically acquired for daily MRI-guided radiotherapy setup. However, for patients with head and neck (HN) cancer, these images are often insufficient for discriminating target volumes and organs at risk (OARs). In this study, we investigated a deep learning (DL) approach to generate high-quality synthetic images from low-quality images. Methods: We used 108 unique HN image sets of paired 2-minute T2-weighted scans (2mMRI) and 6-minute T2-weighted scans (6mMRI). 90 image sets (~20,000 slices) were used to train a 2-dimensional generative adversarial DL model that utilized 2mMRI as input and 6mMRI as output. Eighteen image sets were used to test model performance. Similarity metrics, including the mean squared error (MSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were calculated between normalized synthetic 6mMRI and ground-truth 6mMRI for all test cases. In addition, a previously trained OAR DL auto-segmentation model was used to segment the right parotid gland, left parotid gland, and mandible on all test case images. Dice similarity coefficients (DSC) were calculated between 2mMRI and either ground-truth 6mMRI or synthetic 6mMRI for each OAR; two one-sided t-tests were applied between the ground-truth and synthetic 6mMRI to determine equivalence. Finally, a visual Turing test using paired ground-truth and synthetic 6mMRI was performed using three clinician observers; the percentage of images that were correctly identified was compared to random chance using proportion equivalence tests. Results: The median similarity metrics across the whole images were 0.19, 0.93, and 33.14 for MSE, SSIM, and PSNR, respectively. The median of DSCs comparing ground-truth vs. synthetic 6mMRI auto-segmented OARs were 0.86 vs. 0.85, 0.84 vs. 0.84, and 0.82 vs. 0.85 for the right parotid gland, left parotid gland, and mandible, respectively (equivalence p<0.05 for all OARs). The percent of images correctly identified was equivalent to chance (p<0.05 for all observers). Conclusions: Using 2mMRI inputs, we demonstrate that DL-generated synthetic 6mMRI outputs have high similarity to ground-truth 6mMRI, but further improvements can be made. Our study facilitates the clinical incorporation of synthetic MRI in MRI-guided radiotherapy.

5.
Sci Data ; 9(1): 470, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918336

ABSTRACT

The accurate determination of sarcopenia is critical for disease management in patients with head and neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-generated segmentations of skeletal muscle derived from computed tomography (CT) cross-sectional imaging. This has prompted the increasing utilization of machine learning models for automated sarcopenia determination. However, extant datasets currently do not provide the necessary manually-generated skeletal muscle segmentations at the C3 vertebral level needed for building these models. In this data descriptor, a set of 394 HNC patients were selected from The Cancer Imaging Archive, and their skeletal muscle and adipose tissue was manually segmented at the C3 vertebral level using sliceOmatic. Subsequently, using publicly disseminated Python scripts, we generated corresponding segmentations files in Neuroimaging Informatics Technology Initiative format. In addition to segmentation data, additional clinical demographic data germane to body composition analysis have been retrospectively collected for these patients. These data are a valuable resource for studying sarcopenia and body composition analysis in patients with HNC.


Subject(s)
Head and Neck Neoplasms , Sarcopenia , Adipose Tissue/diagnostic imaging , Head and Neck Neoplasms/diagnostic imaging , Humans , Muscle, Skeletal/diagnostic imaging , Retrospective Studies , Sarcopenia/diagnostic imaging , Sarcopenia/pathology
6.
Front Oncol ; 12: 930432, 2022.
Article in English | MEDLINE | ID: mdl-35965493

ABSTRACT

Background/Purpose: Sarcopenia is a prognostic factor in patients with head and neck cancer (HNC). Sarcopenia can be determined using the skeletal muscle index (SMI) calculated from cervical neck skeletal muscle (SM) segmentations. However, SM segmentation requires manual input, which is time-consuming and variable. Therefore, we developed a fully-automated approach to segment cervical vertebra SM. Materials/Methods: 390 HNC patients with contrast-enhanced CT scans were utilized (300-training, 90-testing). Ground-truth single-slice SM segmentations at the C3 vertebra were manually generated. A multi-stage deep learning pipeline was developed, where a 3D ResUNet auto-segmented the C3 section (33 mm window), the middle slice of the section was auto-selected, and a 2D ResUNet auto-segmented the auto-selected slice. Both the 3D and 2D approaches trained five sub-models (5-fold cross-validation) and combined sub-model predictions on the test set using majority vote ensembling. Model performance was primarily determined using the Dice similarity coefficient (DSC). Predicted SMI was calculated using the auto-segmented SM cross-sectional area. Finally, using established SMI cutoffs, we performed a Kaplan-Meier analysis to determine associations with overall survival. Results: Mean test set DSC of the 3D and 2D models were 0.96 and 0.95, respectively. Predicted SMI had high correlation to the ground-truth SMI in males and females (r>0.96). Predicted SMI stratified patients for overall survival in males (log-rank p = 0.01) but not females (log-rank p = 0.07), consistent with ground-truth SMI. Conclusion: We developed a high-performance, multi-stage, fully-automated approach to segment cervical vertebra SM. Our study is an essential step towards fully-automated sarcopenia-related decision-making in patients with HNC.

SELECTION OF CITATIONS
SEARCH DETAIL
...