Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731450

ABSTRACT

The Rutaceae family is one of the most studied plant families due to the large number of alkaloids isolated from them with outstanding biological properties, among them the quinoline-based alkaloids Graveoline 1 and Dubamine 2. The most common methods for the synthesis of alkaloids 1 and 2 and their derivatives involves cycloaddition reactions or metal-catalyzed coupling processes but with some limitations in scope and functionalization of the quinoline moiety. As a continuation of our current studies on the synthesis and chemical transformation of 2-aminochalcones, we are reporting here an efficient metal-free approach for the total synthesis of alkaloids 1 and 2 along with their analogues with structural diversity, through a two-step sequence involving intramolecular cyclization, oxidation/aromatization, N-methylation and oxidative C-C bond processes, starting from dihydroquinolin-4-ones as common precursors for the construction of the structures of both classes of alkaloids.

2.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612435

ABSTRACT

This study presents the synthesis of four series of novel hybrid chalcones (20,21)a-g and (23,24)a-g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28-33)a-g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d-g, 24a-g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e-g, 33a,b,e-g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 µM and LC50 values in the range of 4.09 µM to >100 µM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25-62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 µg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.


Subject(s)
Chalcones , Isocyanates , Mycobacterium tuberculosis , Chalcones/pharmacology , Antifungal Agents/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Azepines/pharmacology , Fluorouracil , Neisseria gonorrhoeae , Triazines/pharmacology
3.
Arch Pharm (Weinheim) ; : e2400081, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548680

ABSTRACT

New pyridine-based chalcones 4a-h and pyrazolines 5a-h (N-acetyl), 6a-h (N-phenyl), and 7a-h (N-4-chlorophenyl) were synthesized and evaluated by the National Cancer Institute (NCI) against 60 different human cancer cell lines. Pyrazolines 6a, 6c-h, and 7a-h satisfied the pre-determined threshold inhibition criteria, obtaining that compounds 6c and 6f exhibited high antiproliferative activity, reaching submicromolar GI50 values from 0.38 to 0.45 µM, respectively. Moreover, compound 7g (4-CH3) exhibited the highest cytostatic activity of these series against different cancer cell lines from leukemia, nonsmall cell lung, colon, ovarian, renal, and prostate cancer, with LC50 values ranging from 5.41 to 8.35 µM, showing better cytotoxic activity than doxorubicin. Furthermore, the compounds were tested for antibacterial and antiplasmodial activities. Chalcone 4c was the most active with minimal inhibitory concentration (MIC) = 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA), while the pyrazoline 6h showed a MIC = 8 µg/mL against Neisseria gonorrhoeae. For anti-Plasmodium falciparum activity, the chalcones display higher activity with EC50 values ranging from 10.26 to 10.94 µg/mL. Docking studies were conducted against relevant proteins from P. falciparum, exhibiting the minimum binding energy with plasmepsin II. In vivo toxicity assay in Galleria mellonella suggests that most compounds are low or nontoxic.

4.
Chem Asian J ; 19(5): e202301111, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38217883

ABSTRACT

A five-step approach, starting from simple 1,5-disubstituted indoles, has been implemented for the synthesis of diversely substituted indole-pyrido-indene pentacyclic compounds up to 54 % yield via domino radical-mediated processes in the presence of the radical reagents DLP/TTMSS and AIBN/TTMSS. Reactions proceeded with diverse key starting radical cyano-precursors strategically synthesized which were subsequently transformed into the target pentacyclic compounds through an aryl/iminyl radical-mediated domino reactions sequence. In addition to the routine spectroscopic techniques, the structure of radical precursors, as well as, the target pentacyclic products were unequivocally established by single crystal X-ray diffraction, confirming the effectiveness of the proposed synthetic sequence.

5.
Parasitol Res ; 123(1): 75, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38155300

ABSTRACT

The development of new antimalarials is paramount to keep the goals on reduction of malaria cases in endemic regions. The search for quality hits has been challenging as many inhibitory molecules may not progress to the next development stage. The aim of this work was to screen an in-house library of heterocyclic compounds (HCUV) for antimalarial activity combining computational predictions and phenotypic techniques to find quality hits. The physicochemical determinants, pharmacokinetic properties (ADME), and drug-likeness of HCUV were evaluated in silico, and compounds were selected for structure-based virtual screening and in vitro analysis. Seven Plasmodium target proteins were selected from the DrugBank Database, and ligands and receptors were processed using UCSF Chimera and Open Babel before being subjected to docking using Autodock Vina and Autodock 4. Growth inhibition of P. falciparum (3D7) cultures was tested by SYBR Green assays, and toxicity was assessed using hemolytic activity tests and the Galleria mellonella in vivo model. From a total of 792 compounds, 341 with good ADME properties, drug-likeness, and no interference structures were subjected to in vitro analysis. Eight compounds showed IC50 ranging from 0.175 to 0.990 µM, and active compounds included pyridyl-diaminopyrimido-diazepines, pyridyl-N-acetyl- and pyridyl-N-phenyl-pyrazoline derivatives. The most potent compound (UV802, IC50 0.178 µM) showed no toxicophoric and was predicted to interact with P. falciparum 1-cysperoxidredoxin (PfPrx1). For the remaining 7 hits (IC50 < 1 µM), 3 showed in silico binding to PfPrx1, one was predicted to bind the haloacid dehalogenase-like hydrolase and plasmepsin II, and one interacted with the plasmodial heat shock protein 90.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/therapeutic use , Plasmodium falciparum , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Molecular Docking Simulation
6.
Molecules ; 28(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110613

ABSTRACT

The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.

7.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293443

ABSTRACT

A new series of sulfonamides, 8a-b, 10, 12, and 14a-b, were synthesized by N-sulfonation reaction with sulfonyl chlorides 6a-b. Five new series of chalcone-sulfonamide hybrids (16-20)a-f were prepared via Claisen-Schmidt condensation of the newly obtained sulfonamides with aromatic aldehydes 15a-f in basic medium. Chalcones substituted with chlorine at position 4 of each series were used as precursors for the generation of their five-membered heterocyclic pyrazoline (22-23)a-d, (24-25)a-b and carbothioamide 27a-f derivatives. The synthesized compounds were evaluated for their anticancer and antituberculosis activities. To determine their anticancer activity, compounds were screened against sixty human cancer cell lines at a single dose (10 µM). Compounds 17a-c were highly active against LOX IMVI (melanoma), with IC50 values of 0.34, 0.73 and 0.54 µM, respectively. Chalcone 18e showed remarkable results against the entire panel of leukemia cell lines with IC50 values between 0.99-2.52 µM. Moreover, compounds 20e and 20f displayed growth inhibition of Mycobacterium tuberculosis H37Rv at concentrations below 10 µM. Although they showed low selectivity in cytotoxicity tests against the Vero cell line, further optimization could advance the potential biological activity of the selected compounds.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Chalcones/pharmacology , Chalcone/pharmacology , Nitrogen , Chlorine , Chlorides , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Sulfonamides/pharmacology , Sulfanilamide , Aldehydes , Antineoplastic Agents/pharmacology , Molecular Structure , Cell Line, Tumor , Drug Screening Assays, Antitumor
8.
Molecules ; 27(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897899

ABSTRACT

Pyrazole and its derivatives are considered a privileged N-heterocycle with immense therapeutic potential. Over the last few decades, the pot, atom, and step economy (PASE) synthesis of pyrazole derivatives by multicomponent reactions (MCRs) has gained increasing popularity in pharmaceutical and medicinal chemistry. The present review summarizes the recent developments of multicomponent reactions for the synthesis of biologically active molecules containing the pyrazole moiety. Particularly, it covers the articles published from 2015 to date related to antibacterial, anticancer, antifungal, antioxidant, α-glucosidase and α-amylase inhibitory, anti-inflammatory, antimycobacterial, antimalarial, and miscellaneous activities of pyrazole derivatives obtained exclusively via an MCR. The reported analytical and activity data, plausible synthetic mechanisms, and molecular docking simulations are organized in concise tables, schemes, and figures to facilitate comparison and underscore the key points of this review. We hope that this review will be helpful in the quest for developing more biologically active molecules and marketed drugs containing the pyrazole moiety.


Subject(s)
Chemistry, Pharmaceutical , Pyrazoles , Anti-Bacterial Agents/pharmacology , Antifungal Agents , Molecular Docking Simulation , Pyrazoles/pharmacology , alpha-Glucosidases
9.
Antibiotics (Basel) ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36671262

ABSTRACT

In this study, a series of novel quinolinone-based thiosemicarbazones were designed in silico and their activities tested in vitro against Mycobacterium tuberculosis (M. tuberculosis). Quantitative structure-activity relationship (QSAR) studies were performed using quinolinone and thiosemicarbazide as pharmacophoric nuclei; the best model showed statistical parameters of R2 = 0.83; F = 47.96; s = 0.31, and was validated by several different methods. The van der Waals volume, electron density, and electronegativity model results suggested a pivotal role in antituberculosis (anti-TB) activity. Subsequently, from this model a new series of quinolinone-thiosemicarbazone 11a-e was designed and docked against two tuberculosis protein targets: enoyl-acyl carrier protein reductase (InhA) and decaprenylphosphoryl-ß-D-ribose-2'-oxidase (DprE1). Molecular dynamics simulation over 200 ns showed a binding energy of -71.3 to -12.7 Kcal/mol, suggesting likely inhibition. In vitro antimycobacterial activity of quinolinone-thiosemicarbazone for 11a-e was evaluated against M. bovis, M. tuberculosis H37Rv, and six different strains of drug-resistant M. tuberculosis. All compounds exhibited good to excellent activity against all the families of M. tuberculosis. Several of the here synthesized compounds were more effective than the standard drugs (isoniazid, oxafloxacin), 11d and 11e being the most active products. The results suggest that these compounds may contribute as lead compounds in the research of new potential antimycobacterial agents.

10.
Molecules ; 26(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34946516

ABSTRACT

The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R' (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV-Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the "meta" and "para" positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.


Subject(s)
Antifungal Agents , Candida albicans/growth & development , Cryptococcus neoformans/growth & development , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrazoles , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology
11.
Arch Pharm (Weinheim) ; 354(9): e2100094, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34050547

ABSTRACT

A novel series of quinoline-based symmetrical and unsymmetrical bis-chalcones was synthesized via a Claisen-Schmidt condensation reaction between 3-formyl-quinoline/quinolone derivatives with acetone or arylidene acetones, respectively, by using KOH/MeOH/H2 O as a reaction medium. Twelve of the obtained compounds were evaluated for their in vitro cytotoxic activity against 60 different human cancer cell lines according to the National Cancer Institute protocol. Among the screened compounds, the symmetrical N-butyl bis-quinolinyl-chalcone 14g and the unsymmetrical quinolinyl-bis-chalcone 17o bearing a 7-chloro-substitution on the N-benzylquinoline moiety and 4-hydroxy-3-methoxy substituent on the phenyl ring, respectively, exhibited the highest overall cytotoxicity against the evaluated cell lines with a GI50 range of 0.16-5.45 µM, with HCT-116 (GI50 = 0.16) and HT29 (GI50 = 0.42 µM) (colon cancer) representing best-case scenarios. Notably, several GI50 values for these compounds were lower than those of the reference drugs doxorubicin and 5-FU. Docking studies performed on selected derivatives yielded very good binding energies in the active site of proteins that participate in key carcinogenic pathways.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Neoplasms/drug therapy , Quinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/chemistry , Doxorubicin/pharmacology , Fluorouracil/pharmacology , HCT116 Cells , HT29 Cells , Humans , Molecular Docking Simulation , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
12.
RSC Adv ; 11(38): 23310-23329, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-35479808

ABSTRACT

Multidrug resistance to chemotherapy is a critical health problem associated with mutation of the therapeutic target. Therefore, the development of anticancer agents remains a challenge to overcome cancer cell resistance. Herein, a new series of quinazoline-based pyrimidodiazepines 16a-g were synthesized by the cyclocondensation reaction of 2-chloro-4-anilinoquinazoline-chalcones 14a-g with 2,4,5,6-tetraaminopyrimidine. All quinazoline derivatives 14a-g and 16a-g were selected by the U.S. National Cancer Institute (NCI) for testing their anticancer activity against 60 cancer cell lines of different panels of human tumors. Among the tested compounds, quinazoline-chalcone 14g displayed high antiproliferative activity with GI50 values between 0.622-1.81 µM against K-562 (leukemia), RPMI-8226 (leukemia), HCT-116 (colon cancer) LOX IMVI (melanoma), and MCF7 (breast cancer) cancer cell lines. Additionally, the pyrimidodiazepines 16a and 16c exhibited high cytostatic (TGI) and cytotoxic activity (LC50), where 16c showed high cytotoxic activity, which was 10.0-fold higher than the standard anticancer agent adriamycin/doxorubicin against ten cancer cell lines. COMPARE analysis revealed that 16c may possess a mechanism of action through DNA binding that is similar to that of CCNU (lomustine). DNA binding studies indicated that 14g and 16c interact with the calf thymus DNA by intercalation and groove binding, respectively. Compounds 14g, 16c and 16a displayed strong binding affinities to DNA, EGFR and VEGFR-2 receptors. None of the active compounds showed cytotoxicity against human red blood cells.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118065, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-31955114

ABSTRACT

This paper presents the synthesis and characterization of two series of new bis-quinolin curcuminoid BF2-complexes 11 and their respective decomplexed bis-quinolin curcuminoid derivatives 12, in an attempt to understand their optical properties. The synthesized compounds showed interesting fluorescent characteristics in both solution and in solid-state. The characteristic of the electronic transitions involved in these systems were measured via Uv-vis spectroscopy and fluorescence spectroscopy. Results revealed that the absorption and emission bands are dependent of the structure of compounds 11 and 12 but also of the type of substituent, even showing a push-pull behavior in those derivatives substituted with methyl group. These findings were also confirmed through computational calculations at DFT level via simulations of the Uv-vis spectra and determining the topology of the border orbitals responsible for light absorption.

14.
Molecules ; 25(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991635

ABSTRACT

Focusing on the literature progress since 2002, the present review explores the highly significant role that multicomponent reactions (MCRs) have played as a very important tool for expedite synthesis of a vast number of organic molecules, but also, highlights the fact that many of such molecules are biologically active or at least have been submitted to any biological screen. The selected papers covered in this review must meet two mandatory requirements: (1) the reported products should be obtained via a multicomponent reaction; (2) the reported products should be biologically actives or at least tested for any biological property. Given the diversity of synthetic approaches utilized in MCRs, the highly diverse nature of the biological activities evaluated for the synthesized compounds, and considering their huge structural variability, much of the reported data are organized into concise schemes and tables to facilitate comparison, and to underscore the key points of this review.


Subject(s)
Combinatorial Chemistry Techniques , Drug Discovery , Catalysis , Humans
15.
RSC Adv ; 10(56): 34114-34129, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519030

ABSTRACT

A novel series of triazin-chalcones (7,8)a-g and triazin-N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were synthesized and evaluated for their anticancer activity against nine different cancer strains. Triazine ketones 5 and 6 were synthesized from the cyanuric chloride 1 by using stepwise nucleophilic substitution of the chlorine atom. These ketones were subsequently subjected to a Claisen-Schmidt condensation reaction with aromatic aldehydes affording chalcones (7,8)a-g. Then, N-(3,5-dichlorophenyl)pyrazolines (9,10)a-g were obtained by cyclocondensation reactions of the respective chalcones (7,8)a-g with 3,5-dichlorophenylhydrazine. Among all the evaluated compounds, chalcones 7d,g and 8g exhibited more potent in vitro anticancer activity, with outstanding GI50 values ranging from 0.422 to 14.9 µM and LC50 values ranging from 5.08 µM to >100 µM. In silico studies, for both ligand- and structure-based, were executed to explore the inhibitory nature of chalcones and triazine derivatives. The results suggested that the evaluated compounds could act as modulators of the human thymidylate synthase enzyme.

16.
Bioorg Chem ; 94: 103414, 2020 01.
Article in English | MEDLINE | ID: mdl-31757412

ABSTRACT

Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrimidines/therapeutic use , Drug Design , Humans , Models, Molecular , Pyrimidines/pharmacology
17.
ChemMedChem ; 15(4): 354-362, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31875350

ABSTRACT

A facile protocol that enables synthetic interconversion of CUR-BF2 and CUR compounds is described that significantly widens the preparative scope of curcuminoids, providing access to larger libraries of compounds, thus enabling comparative antiproliferative and apoptotic study of a larger library of synthetic analogs in cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Diarylheptanoids/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diarylheptanoids/chemical synthesis , Diarylheptanoids/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
18.
Antibiotics (Basel) ; 8(4)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795101

ABSTRACT

Eight quinoline-based hydroxyimidazolium hybrids 7a-h were prepared and evaluated in vitro against a panel of clinically important fungal and bacterial pathogens, including mycobacteria. Hybrid compounds 7c-d showed remarkable antifungal activity against Cryptococcus neoformans with a minimum inhibitory concentration (MIC) value of 15.6 µg/mL. Against other opportunistic fungi such as Candida spp. and Aspergillus spp., these hybrids showed MIC values of 62.5 µg/mL. Regarding their antibacterial activity, all the synthetic hybrids demonstrated little inhibition of Gram-negative bacteria (MIC ≥50 µg/mL), however, hybrid 7b displayed >50% inhibition against Klebsiella pneumoniae at 20 µg/mL and full inhibition at 50 µg/mL. Moreover, this hybrid was shown to be a potent anti-staphylococcal molecule, with a MIC value of 2 µg/mL (5 µM). In addition, hybrid 7h also demonstrated inhibition of Staphylococcus aureus at 20 µg/mL (47 µM). Hybrids 7a and 7b were the most potent against Mycobacterium tuberculosis H37Rv with MIC values of 20 and 10 µg/mL (46 and 24 µM), respectively. The 7b hybrid demonstrated high selectivity in killing S. aureus and M. tuberculosis H37Rv in comparison with mammalian cells (SI >20), and thus it can be considered a hit molecule for mechanism of action studies and the exploration of related chemical space.

19.
Eur J Med Chem ; 176: 50-60, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31096118

ABSTRACT

New sulfonamides 5/6 derived from 4-methoxyacetophenone 1 were synthesized by N-sulfonation reaction of ammonia (3) and aminopyrimidinone (4) with its sulfonyl chloride derivative 2. Sulfonamides 5 and 6 were used as precursors of two new series of chalcones 8a-f and 9a-f, which were obtained through Claisen-Schmidt condensation with aromatic aldehydes 7a-f. Compounds 5/6, 8a-d, 8f, 9a-d, and 9f were screened by the US National Cancer Institute (NCI) at 10 µM against sixty different human cancer cell lines (one-dose trial). Chalcones 8b and 9b satisfied the pre-determined threshold inhibition criteria and were selected for screening at five different concentrations (100, 10, 1.0, 0.1, and 0.01 µM). Compound 8b exhibited remarkable GI50 values ranging from 0.57 to 12.4 µM, with cytotoxic effects being observed in almost all cases, especially against the cell lines K-562 of Leukemia and LOX IMVI of Melanoma with GI50 = 0.57 and 1.28 µM, respectively. Moreover, all compounds were screened against Mycobacterium tuberculosis H37Rv, chalcones 8a-c and 9a-c were the most active showing MIC values between 14 and 42 µM, and interestingly they were devoid of antibacterial activity against Mycobacterium smegmatis and Staphylococcus aureus. These antituberculosis hits showed however low selectivity, being equally inhibitory to M. tuberculosis and mammalian T3T cells. The chalcone-sulfonamide hybrids 8a-f and 9a-f resulted to be appealing cytotoxic agents with significant antituberculosis activity.


Subject(s)
Antineoplastic Agents/pharmacology , Antitubercular Agents/pharmacology , Chalcones/pharmacology , Sulfonamides/pharmacology , 3T3 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/toxicity , Cell Line, Tumor , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/toxicity , Drug Screening Assays, Antitumor , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/toxicity
20.
Beilstein J Org Chem ; 15: 642-654, 2019.
Article in English | MEDLINE | ID: mdl-30931006

ABSTRACT

A series of giant tris(heteroaryl)methanes are easily assembled by one-pot three-component synthesis by simple reflux in ethanol without catalyst or additives. Diversely substituted indoles (Ar1) react with quinoline aldehydes, quinolone aldehydes, chromone aldehydes, and fluorene aldehydes (Ar2CHO) and coumarins (Ar3) in 1:1:1 ratio to form the corresponding tris(heteroaryl)methanes (Ar1Ar2Ar3)CH along with (Ar1Ar1Ar2)CH triads. A series of new 2:1 triads were also synthesized by coupling substituted indoles with Ar2CHO. The coupling reactions could also be carried out in water (at circa 80 °C) but with chemoselectivity favoring (Ar1Ar1Ar2)CH over (Ar1Ar2Ar3)CH. The molecular structure of a representative (Ar1Ar2Ar3)CH triad was confirmed by X-ray analysis. Model tris(heteroaryl/aryl)methylium salts were generated by reaction with DDQ/HPF6 and studied by NMR and by DFT and GIAO-DFT.

SELECTION OF CITATIONS
SEARCH DETAIL
...