Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(7): 4788-4803, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38318606

ABSTRACT

Dry reforming of methane (DRM) has recently received wide attention owing to its outstanding performance in the reduction and conversion of CH4 and CO2 to syngas (H2 and CO). From an industrial perspective, nickel (Ni)-supported catalysts have been deemed among the most suitable catalysts for DRM owing to their low cost and high activity compared to noble metals. However, a downside of nickel catalysts is their high susceptibility to deactivation due to coke formation and sintering at high temperatures. Using appropriate supports and preparation methods plays a major role in improving the activity and stability of Ni-supported catalysts. Halloysite nanotubes (HNTs) are largely utilized in catalysis as a support for Ni owing to their abundance, low cost, and ease of preparation. The treatment of HNTs (chemical or physical) prior to doping with Ni is considered a suitable method for increasing the overall performance of the catalyst. In this study, the surface of HNTs was activated with acids (HNO3 and H2SO4) and alkalis (NaOH and Na2CO3 + NaNO3) prior to Ni doping to assess the effects of support treatment on the stability, activity, and longevity of the catalyst. Nickel catalysts on raw HNT, acid-treated HNT, and alkali-treated HNT supports were prepared via wet impregnation. A detailed characterization of the catalysts was conducted using X-ray diffraction (XRD), BET surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), solid-state nuclear magnetic resonance (ssNMR), H2-temperature programmed reduction, (H2-TPR), CO2-temperature programmed desorption (CO2-TPD), and Ni-dispersion via H2-pulse chemisorption. Our results reveal a clear alteration in the structure of HNTs after treatment, while elemental mapping shows a uniform distribution of Ni throughout all the different supports. Moreover, the supports treated with a molten salt method resulted in the overall highest CO2 and CH4 conversion among the studied catalysts and exhibited high stability over 24 hours testing.

3.
ACS Omega ; 9(1): 771-780, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222595

ABSTRACT

Hydration of carbon dioxide in water solution is the rate limiting step for the CO2 mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO2 hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO2 hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO2 hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.

4.
ACS Omega ; 8(49): 46325-46345, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107971

ABSTRACT

Oil and gas are only two industries that could change because of nanotechnology, a rapidly growing field. The chemical-enhanced oil recovery (CEOR) method uses chemicals to accelerate oil flow from reservoirs. New and enhanced CEOR compounds that are more efficient and eco-friendly can be created using nanotechnology. One of the main research areas is creating novel nanomaterials that can transfer EOR chemicals to the reservoir more effectively. It was creating nanoparticles that can be used to change the viscosity and surface tension of reservoir fluids and constructing nanoparticles that can be utilized to improve the efficiency of the EOR compounds that are already in use. The assessment also identifies some difficulties that must be overcome before nanotechnology-based EOR can become widely used in industry. These difficulties include the requirement for creating mass-producible, cost-effective nanomaterials. There is a need to create strategies for supplying nanomaterials to the reservoir without endangering the formation of the reservoir. The requirement is to evaluate the environmental effects of CEOR compounds based on nanotechnology. The advantages of nanotechnology-based EOR are substantial despite the difficulties. Nanotechnology could make oil production more effective, profitable, and less environmentally harmful. An extensive overview of the most current advancements in nanotechnology-based EOR is provided in this paper. It is a useful resource for researchers and business people interested in this area. This review's analysis of current advancements in nanotechnology-based EOR shows that this area is attracting more and more attention. There have been a lot more publications on this subject in recent years, and a lot of research is being done on many facets of nanotechnology-based EOR. The scientometric investigation discovered serious inadequacies in earlier studies on adopting EOR and its potential benefits for a sustainable future. Research partnerships, joint ventures, and cutting-edge technology that consider assessing current changes and advances in oil output can all benefit from the results of our scientometric analysis.

5.
J Phys Chem B ; 125(18): 4890-4897, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33885318

ABSTRACT

The need to chemically convert CO2 at the interface of aqueous amine solutions has become particularly relevant for the development and the broad distribution of cost-effective and near-future devices for direct air capture working at low (e.g., ambient) partial pressure. Here, we have determined the stability of a CO2-monoethanolamine zwitterion and its chemical conversion into carbamate at the vapor/liquid water interface by first-principles molecular dynamics simulations coupled with a recently introduced enhanced sampling technique. Contrary to the bulk water case, our results show that both the zwitterion and carbamate ions are poorly stable at the vapor/amine aqueous interface, further stating the differences between the homogeneous and heterogeneous CO2 chemical conversion. The design of novel and cost-effective capture systems, such as those offered by amine-based scrubbing solutions, working at low (e.g., ambient) CO2 partial pressure should explore the use of novel solvents, different from aqueous mixtures, to overcome the limits of the current absorbents.

6.
J Phys Chem B ; 124(45): 10245-10256, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33140965

ABSTRACT

Carbon dioxide scrubbing by aqueous amine solution is considered as a promising technology for post-combustion CO2 capture, while mitigating climate change. The lack of physicochemical details for this process, especially at the interface between the gas and the condensed phase, limits our capability in designing novel and more cost-effective scrubbing systems. Here, we present classical and first-principles molecular dynamics results on CO2 capture at the gas/amine solution interfaces using solvents of different polarities. Even if it is apolar, carbon dioxide is absorbed at the gas/monoethanolamine (MEA) aqueous solution interface, forming stable and interfacial [CO2·MEA] complexes, which are the first reaction intermediate toward the chemical conversion of CO2 to carbamate ions. We report that the stability of the interfacial [CO2·MEA] precomplex depends on the nature and polarity of the solution, as well as on the conformer population of MEA. By changing the polarity of the solvent, using chloroform, we observed a shift in the interfacial MEA population toward conformers that form more stable [CO2·MEA] complexes and, at the same time, a further stabilization of the complex induced by the solvent environment. Thus, while lowering the polarity of the solvent could decrease the solubility of MEA, at the same time, it favors conformers that are more prone to CO2 capture and mineralization. The results presented here offer a theoretical framework that helps in designing novel and more cost-effective solvents for CO2 scrubbing systems, while shedding further light on the intrinsic reaction mechanisms of interfacial environments in general.

7.
Arab J Urol ; 15(4): 355-359, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29234540

ABSTRACT

OBJECTIVE: To assess the effectiveness and safety of bipolar plasma kinetic energy for en bloc enucleation of non-muscle-invasive bladder cancer (NMIBC). PATIENTS AND METHODS: In all, 46 patients diagnosed with suspected NMIBC were included. All patients were diagnosed using ultrasonography, computed tomography, and diagnostic cystoscopy, and then underwent bipolar plasma kinetic enucleation of bladder tumour (PKEBT). At the end of the procedure, all patients had a single-dose (40 mg in 40 mL saline) intravesical installation of mitomycin C (<6 h after bipolar PKEBT). Follow-up diagnostic cystoscopy was performed at 3, 6, and 12 months. RESULTS: The mean (SD) enucleation time was 17 (5.4) min, operative time was 27.9 (11.4) min, haemoglobin drop was 1.3 (0.9) g/dL, postoperative irrigation time was 1.7 (2.3) h, and hospital stay was 35.4 (13) h. There was intraoperative bleeding in three patients, with one requiring blood transfusion. There were no other perioperative complications. At the 1-month follow-up, six (13%) patients were diagnosed with residual tumour and underwent repeat bipolar PKEBT. The overall recurrence rate at 12 months' follow-up was 15.2%. CONCLUSION: Bipolar PKEBT is an effective procedure for managing NMIBC, as it preserves the entire lamina propria and detrusor muscle in well-intact specimens, with negligible perioperative complications.

SELECTION OF CITATIONS
SEARCH DETAIL