Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732358

ABSTRACT

The mortality rate of acute intracerebral hemorrhage (ICH) can reach up to 40%. Although the radiomics of ICH have been linked to hematoma expansion and outcomes, no research to date has explored their correlation with mortality. In this study, we determined the admission non-contrast head CT radiomic correlates of survival in supratentorial ICH, using the Antihypertensive Treatment of Acute Cerebral Hemorrhage II (ATACH-II) trial dataset. We extracted 107 original radiomic features from n = 871 admission non-contrast head CT scans. The Cox Proportional Hazards model, Kaplan-Meier Analysis, and logistic regression were used to analyze survival. In our analysis, the "first-order energy" radiomics feature, a metric that quantifies the sum of squared voxel intensities within a region of interest in medical images, emerged as an independent predictor of higher mortality risk (Hazard Ratio of 1.64, p < 0.0001), alongside age, National Institutes of Health Stroke Scale (NIHSS), and baseline International Normalized Ratio (INR). Using a Receiver Operating Characteristic (ROC) analysis, "the first-order energy" was a predictor of mortality at 1-week, 1-month, and 3-month post-ICH (all p < 0.0001), with Area Under the Curves (AUC) of >0.67. Our findings highlight the potential role of admission CT radiomics in predicting ICH survival, specifically, a higher "first-order energy" or very bright hematomas are associated with worse survival outcomes.

2.
NPJ Digit Med ; 7(1): 26, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321131

ABSTRACT

Hematoma expansion (HE) is a modifiable risk factor and a potential treatment target in patients with intracerebral hemorrhage (ICH). We aimed to train and validate deep-learning models for high-confidence prediction of supratentorial ICH expansion, based on admission non-contrast head Computed Tomography (CT). Applying Monte Carlo dropout and entropy of deep-learning model predictions, we estimated the model uncertainty and identified patients at high risk of HE with high confidence. Using the receiver operating characteristics area under the curve (AUC), we compared the deep-learning model prediction performance with multivariable models based on visual markers of HE determined by expert reviewers. We randomly split a multicentric dataset of patients (4-to-1) into training/cross-validation (n = 634) versus test (n = 159) cohorts. We trained and tested separate models for prediction of ≥6 mL and ≥3 mL ICH expansion. The deep-learning models achieved an AUC = 0.81 for high-confidence prediction of HE≥6 mL and AUC = 0.80 for prediction of HE≥3 mL, which were higher than visual maker models AUC = 0.69 for HE≥6 mL (p = 0.036) and AUC = 0.68 for HE≥3 mL (p = 0.043). Our results show that fully automated deep-learning models can identify patients at risk of supratentorial ICH expansion based on admission non-contrast head CT, with high confidence, and more accurately than benchmark visual markers.

3.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337824

ABSTRACT

BACKGROUND: Hematoma expansion (HE) following an intracerebral hemorrhage (ICH) is a modifiable risk factor and a treatment target. We examined the association of HE with neurological deterioration (ND), functional outcome, and mortality based on the time gap from onset to baseline CT. METHODS: We included 567 consecutive patients with supratentorial ICH and baseline head CT within 24 h of onset. ND was defined as a ≥4-point increase on the NIH stroke scale (NIHSS) or a ≥2-point drop on the Glasgow coma scale. Poor outcome was defined as a modified Rankin score of 4 to 6 at 3-month follow-up. RESULTS: The rate of HE was higher among those scanned within 3 h (124/304, 40.8%) versus 3 to 24 h post-ICH onset (53/263, 20.2%) (p < 0.001). However, HE was an independent predictor of ND (p < 0.001), poor outcome (p = 0.010), and mortality (p = 0.003) among those scanned within 3 h, as well as those scanned 3-24 h post-ICH (p = 0.043, p = 0.037, and p = 0.004, respectively). Also, in a subset of 180/567 (31.7%) patients presenting with mild symptoms (NIHSS ≤ 5), hematoma growth was an independent predictor of ND (p = 0.026), poor outcome (p = 0.037), and mortality (p = 0.027). CONCLUSION: Despite decreasing rates over time after ICH onset, HE remains an independent predictor of ND, functional outcome, and mortality among those presenting >3 h after onset or with mild symptoms.

4.
J Stroke Cerebrovasc Dis ; 32(11): 107375, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37738914

ABSTRACT

BACKGROUND AND PURPOSE: Perihematomal edema (PHE) represents the secondary brain injury after intracerebral hemorrhage (ICH). However, neurobiological characteristics of post-ICH parenchymal injury other than PHE volume have not been fully characterized. Using intravoxel incoherent motion imaging (IVIM), we explored the clinical correlates of PHE diffusion and (micro)perfusion metrics in subacute ICH. MATERIALS AND METHODS: In 41 consecutive patients scanned 1-to-7 days after supratentorial ICH, we determined the mean diffusion (D), pseudo-diffusion (D*), and perfusion fraction (F) within manually segmented PHE. Using univariable and multivariable statistics, we evaluated the relationship of these IVIM metrics with 3-month outcome based on the modified Rankin Scale (mRS). RESULTS: In our cohort, the average (± standard deviation) age of patients was 68.6±15.6 years, median (interquartile) baseline National Institute of Health Stroke Scale (NIHSS) was 7 (3-13), 11 (27 %) patients had poor outcomes (mRS>3), and 4 (10 %) deceased during the follow-up period. In univariable analyses, admission NIHSS (p < 0.001), ICH volume (p = 0.019), ICH+PHE volume (p = 0.016), and average F of the PHE (p = 0.005) had significant correlation with 3-month mRS. In multivariable model, the admission NIHSS (p = 0.006) and average F perfusion fraction of the PHE (p = 0.003) were predictors of 3-month mRS. CONCLUSION: The IVIM perfusion fraction (F) maps represent the blood flow within microvasculature. Our pilot study shows that higher PHE microperfusion in subacute ICH is associated with worse outcomes. Once validated in larger cohorts, IVIM metrics may provide insight into neurobiology of post-ICH secondary brain injury and identify at-risk patients who may benefit from neuroprotective therapy.


Subject(s)
Brain Edema , Brain Injuries , Brain Neoplasms , Humans , Middle Aged , Aged , Aged, 80 and over , Pilot Projects , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Edema , Hematoma , Brain Edema/diagnostic imaging , Brain Edema/etiology
5.
Cancers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36900338

ABSTRACT

Indeterminate thyroid nodules (ITN) are commonly encountered among the general population, with a malignancy rate of 10 to 40%. However, many patients may be overtreated with futile surgery for benign ITN. To avoid unnecessary surgery, PET/CT scan is a possible alternative to help differentiate between benign and malignant ITN. In this narrative review, the major results and limitations of the most recent studies on PET/CT efficacy (from PET/CT visual assessment to quantitative PET parameters and recent radiomic features analysis) and on cost-effectiveness (compared to other alternatives (such as surgery)) are presented. PET/CT can reduce futile surgery with visual assessment (around 40%; if ITN ≥ 10 mm). Moreover, PET/CT conventional parameters and radiomic features extracted from PET/CT imaging can be associated together in a predictive model to rule out malignancy in ITN, with a high NPV (96%) when certain criteria are met. Even though promising results were obtained in these recent PET/CT studies, further studies are needed to enable PET/CT to become the definitive diagnostic tool once a thyroid nodule is identified as indeterminate.

SELECTION OF CITATIONS
SEARCH DETAIL
...