Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 13246, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168226

ABSTRACT

Algae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200-950 cm[Formula: see text]), lipids (1740, 2852, 2922 cm[Formula: see text]), and nucleic acid (1160 and 1201 cm[Formula: see text]) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.


Subject(s)
Carbon Dioxide/pharmacology , Diatoms/drug effects , Single-Cell Analysis/methods , Acclimatization , Diatoms/metabolism , Spectrophotometry, Infrared , Synchrotrons , Time-Lapse Imaging
2.
Transl Vis Sci Technol ; 9(7): 16, 2020 06.
Article in English | MEDLINE | ID: mdl-32832223

ABSTRACT

Purpose: The development of new approaches to human vision restoration could be greatly accelerated with the use of nonhuman primate models; however, there is a paucity of primate models of outer retina degeneration with good spatial localization. To limit ablation to the photoreceptors, we developed a new approach that uses a near-infrared ultrafast laser, focused using adaptive optics, to concentrate light in a small focal volume within the retina. Methods: In the eyes of eight anesthetized macaques, 187 locations were exposed to laser powers from 50 to 210 mW. Laser exposure locations were monitored for up to 18 months using fluorescein angiography (FA), optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO), adaptive optics scanning laser ophthalmoscope (AOSLO) reflectance imaging, two-photon excited fluorescence (TPEF) ophthalmoscopy, histology, and calcium responses of retinal ganglion cells. Results: This method produced localized photoreceptor loss with minimal axial spread of damage to other retinal layers, verified by in-vivo structural imaging and histologic examination, although in some cases evidence of altered autofluorescence was found in the adjacent retinal pigment epithelium (RPE). Functional assessment using blood flow imaging of the retinal plexus and calcium imaging of the response of ganglion cells above the photoreceptor loss shows that inner retinal circuitry was preserved. Conclusions: Although different from a genetic model of retinal degeneration, this model of localized photoreceptor loss may provide a useful testbed for vision restoration studies in nonhuman primates. Translational Relevance: With this model, a variety of vision restoration methods can be tested in the non-human primate.


Subject(s)
Retinal Pigment Epithelium , Tomography, Optical Coherence , Fluorescein Angiography , Ophthalmoscopy , Photoreceptor Cells
3.
Stem Cell Reports ; 15(2): 482-497, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32707075

ABSTRACT

Stem cell-based transplantation therapies offer hope for currently untreatable retinal degenerations; however, preclinical progress has been largely confined to rodent models. Here, we describe an experimental platform for accelerating photoreceptor replacement therapy in the nonhuman primate, which has a visual system much more similar to the human. We deployed fluorescence adaptive optics scanning light ophthalmoscopy (FAOSLO) to noninvasively track transplanted photoreceptor precursors over time at cellular resolution in the living macaque. Fluorescently labeled photoreceptors generated from a CRX+/tdTomato human embryonic stem cell (hESC) reporter line were delivered subretinally to macaques with normal retinas and following selective ablation of host photoreceptors using an ultrafast laser. The fluorescent reporter together with FAOSLO allowed transplanted photoreceptor precursor survival, migration, and neurite formation to be monitored over time in vivo. Histological examination suggested migration of photoreceptor precursors to the outer plexiform layer and potential synapse formation in ablated areas in the macaque eye.


Subject(s)
Photoreceptor Cells/transplantation , Animals , Cell Differentiation , Fluorescence , Humans , Light , Models, Animal , Optics and Photonics , Primates , Retina/metabolism , Single-Cell Analysis , Tomography, Optical Coherence
4.
Nat Commun ; 11(1): 1849, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296060

ABSTRACT

Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface.

5.
Analyst ; 143(19): 4674-4683, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30176033

ABSTRACT

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 µmol m-2 s-1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of hyperspectral cubes showed macromolecular pool variations (carbohydrates, lipids and DNA/RNA) of less than 2% after fringe correction.

6.
Trends Biochem Sci ; 43(9): 650-653, 2018 09.
Article in English | MEDLINE | ID: mdl-29729937

ABSTRACT

An emerging application of mid-IR spectrochemical imaging of the retina is its utility in studying the highly localized biomolecular alterations in the chemistry of retinal cell layers associated with several pathological conditions. Spatially resolved IR images highlight simultaneous chemical composition of the entire span of the retina in a label-free manner.


Subject(s)
Diagnostic Imaging/methods , Infrared Rays , Retina/diagnostic imaging , Retina/metabolism , Animals , Humans , Spectrophotometry, Infrared
7.
Sci Rep ; 8(1): 1096, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348593

ABSTRACT

To discover the mechanisms underlying the progression of diabetic retinopathy (DR), a more comprehensive understanding of the biomolecular processes in individual retinal cells subjected to hyperglycemia is required. Despite extensive studies, the changes in the biochemistry of retinal layers during the development of DR are not well known. In this study, we aimed to determine a more detailed understanding of the natural history of DR in Akita/+ (type 1 diabetes model) male mice with different duration of diabetes. Employing label-free spatially resolved Fourier transform infrared (FT-IR) chemical imaging engaged with multivariate analysis enabled us to identify temporal-dependent reproducible biomarkers of the individual retinal layers from mice with 6 weeks,12 weeks, 6 months, and 10 months of age. We report, for the first time, the nature of the biochemical alterations over time in the biochemistry of distinctive retinal layers namely photoreceptor retinal layer (PRL), inner nuclear layer (INL), and plexiform layers (OPL, IPL). Moreover, we present the molecular factors associated with the changes in the protein structure and cellular lipids of retinal layers induced by different duration of diabetes. Our paradigm provides a new conceptual framework for a better understanding of the temporal cellular changes underlying the progression of DR.


Subject(s)
Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Retina/metabolism , Retina/pathology , Animals , Biomarkers , Diabetic Retinopathy/diagnostic imaging , Disease Models, Animal , Disease Progression , Male , Mice , Photoreceptor Cells/metabolism , Spectroscopy, Fourier Transform Infrared , Tomography, Optical Coherence
8.
PLoS One ; 12(10): e0186375, 2017.
Article in English | MEDLINE | ID: mdl-29036196

ABSTRACT

Disinfectants and biocidal products have been widely used to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections in homes and healthcare environments. Although disruption of cytoplasmic membrane integrity has been documented as the main bactericidal effect of biocides, little is known about the biochemical alterations induced by these chemical agents. In this study, we used Fourier transform infrared (FT-IR) spectroscopy and chemometric tools as an alternative non-destructive technique to determine the bactericidal effects of commonly used disinfectants against MRSA USA-300. FTIR spectroscopy permits a detailed characterization of bacterial reactivity, allowing an understanding of the fundamental mechanism of action involved in the interaction between bacteria and disinfectants. The disinfectants studied were ethanol 70% (N = 5), isopropanol (N = 5), sodium hypochlorite (N = 5), triclosan (N = 5) and triclocarban (N = 5). Results showed less than 5% colony forming units growth of MRSA treated with triclocarban and no growth in the other groups. Nearly 70,000 mid-infrared spectra from the five treatments and the two control (untreated; N = 4) groups of MRSA (bacteria grown in TSB and incubated at 37°C (Control I) / at ambient temperature (Control II), for 24h) were pre-processed and analyzed using principal component analysis followed by linear discriminant analysis (PCA-LDA). Clustering of strains of MRSA belonging to five treatments and the discrimination between each treatment and two control groups in MRSA (untreated) were investigated. PCA-LDA discriminatory frequencies suggested that ethanol-treated spectra are the most similar to isopropanol-treated spectra biochemically. Also reported here are the biochemical alterations in the structure of proteins, lipid membranes, and phosphate groups of MRSA produced by sodium hypochlorite, triclosan, and triclocarban treatments. These findings provide mechanistic information involved in the interaction between MRSA strains and hygiene products; thereby demonstrating the potential of spectroscopic analysis as an objective, robust, and label-free tool for evaluating the macromolecular changes involved in disinfectant-treated MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Alcohols/pharmacology
9.
Article in English | MEDLINE | ID: mdl-28620356

ABSTRACT

Stimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR) imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT) of 6 week-old C57BL6 mice exposed to 30°C (N = 5), 24°C (N = 5), and 10°C (N = 5) conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as indicated by increased messenger RNA expression levels of a panel of thermogenic marker genes including uncoupling protein 1 (UCP-1) and Dio2. Protein to lipid ratio, calculated from the ratio of the integrated area from 1,600 to 1,700 cm-1 (amide I) to the integrated area from 2,830 to 2,980 cm-1 (saturated lipids), was elevated in 10°C BAT and s-WAT compared to 24°C (p = 0.004 and p < 0.0001) and 30°C (p = 0.0033 and p < 0.0001). Greater protein to lipid ratio was associated with greater UCP-1 expression level in the BAT (p = 0.021) and s-WAT (p = 0.032) and greater Dio2 expression in s-WAT (p = 0.033). The degree of unsaturation, calculated from the ratio of the integrated area from 2,992 to 3,020 cm-1 (unsaturated lipids) to the integrated area from 2,830 to 2,980 cm-1 (saturated lipids), showed stepwise decreases going from colder-exposed to warmer-exposed BAT. Complementary 1H NMR measurements confirmed the findings from this ratio in BAT. Principal component analysis applied to FTIR spectra revealed pronounced differences in overall spectral characteristics between 30, 24, and 10°C BAT and s-WAT. Spatially resolved FTIR imaging is a promising technique to quantify cold-induced biochemical changes in BAT and s-WAT in a label-free manner.

10.
Analyst ; 142(7): 1061-1072, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28210739

ABSTRACT

Diabetic retinopathy is a microvascular complication of diabetes that can lead to blindness. In the present study, we aimed to determine the nature of diabetes-induced, highly localized biochemical changes in the neuroretina at the onset of diabetes. High-resolution synchrotron Fourier transform infrared (s-FTIR) wide field microscopy coupled with multivariate analysis (PCA-LDA) was employed to identify biomarkers of diabetic retinopathy with spatial resolution at the cellular level. We compared the retinal tissue prepared from 6-week-old Ins2Akita/+ heterozygous (Akita/+, N = 6; a model of diabetes) male mice with the wild-type (control, N = 6) mice. Male Akita/+ mice become diabetic at 4-weeks of age. Significant differences (P < 0.001) in the presence of biomarkers associated with diabetes and segregation of spectra were achieved. Differentiating IR bands attributed to nucleic acids (964, 1051, 1087, 1226 and 1710 cm-1), proteins (1662 and 1608 cm-1) and fatty acids (2854, 2923, 2956 and 3012 cm-1) were observed between the Akita/+ and the WT samples. A comparison between distinctive layers of the retina, namely the photoreceptor retinal layer (PRL), outer plexiform layer (OPL), inner nucleus layer (INL) and inner plexiform layer (IPL) suggested that the photoreceptor layer is the most susceptible layer to oxidative stress in short-term diabetes. Spatially-resolved chemical images indicated heterogeneities and oxidative-stress induced alterations in the diabetic retina tissue morphology compared with the WT retina. In this study, the spectral biomarkers and the spatial biochemical alterations in the diabetic retina and in specific layers were identified for the first time. We believe that the conclusions drawn from these studies will help to bridge the gap in our understanding of the molecular and cellular mechanisms that contribute to the pathobiology of diabetic retinopathy.


Subject(s)
Diabetic Retinopathy/diagnostic imaging , Oxidative Stress , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Animals , Biomarkers/analysis , Diabetes Mellitus, Experimental/complications , Male , Mice , Mice, Inbred C57BL , Multivariate Analysis , Retina/physiopathology
11.
J Photochem Photobiol B ; 167: 150-157, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28064075

ABSTRACT

Blue light inactivates methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive antibiotic resistant bacterium that leads to fatal infections; however, the mechanism of bacterial death remains unclear. In this paper, to uncover the mechanism underlying the bactericidal effect of blue light, a combination of Fourier transform infrared (FTIR) spectroscopy and chemometric tools is employed to detect the photoreactivity of MRSA and its distinctive pathway toward apoptosis after treatment. The mechanism of action of UV light and vancomycin against MRSA is also investigated to support the findings. Principal component analysis followed by linear discriminant analysis (PCA- LDA) is employed to reveal clustering of five groups of MRSA samples, namely untreated (control I), untreated and incubated at ambient air (control II), irradiated with 470nm blue light, irradiated with 253.5 UV light, and vancomycin-treated MRSA. Loadings plot from PCA-LDA analysis reveals important functional groups in proteins (1683, 1656, 1596, 1542cm-1), lipids (1743, 1409cm-1), and nucleic acids region of the spectrum (1060, 1087cm-1) that are responsible for the classification of blue light irradiated spectra and control spectra. Cluster vector plots and scores plot reveals that UV light-irradiated spectra are the most biochemically similar to blue light- irradiated spectra; however, some wavenumbers experience a shift. The shifts between blue light and UV light irradiated loadings plot at νasym PO2- band (from 1228 to 1238cm-1), DNA backbone (from 970 to 966cm-1) and base pairing vibration of DNA (from 1717 to 1712cm-1) suggest distinctive changes in DNA conformation in response to irradiation. Our findings indicate that irradiation of MRSA with 470nm light induces A-DNA cleavage and that B-DNA is more resistant to damage by blue light. Blue light and UV light treatment of MRSA are complementary and distinct from the known antimicrobial effect of vancomycin. Moreover, it is known that UV-induced cleavage of DNA predominantly targets B-DNA, which is in agreement with the FTIR findings. Overall the results suggest that the combination of light and vancomycin could be a more robust approach in treating MRSA infections.


Subject(s)
Light , Methicillin-Resistant Staphylococcus aureus/radiation effects , Microscopy/methods , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , DNA, Bacterial/radiation effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , Vancomycin/pharmacology
12.
Analyst ; 140(18): 6421, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26273705

ABSTRACT

Correction for 'Cold shock induces apoptosis of dorsal root ganglion neurons plated on infrared windows' by Ebrahim Aboualizadeh et al., Analyst, 2015, 140, 4046-4056.

13.
Analyst ; 140(12): 4046-56, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-26000346

ABSTRACT

The chemical status of live sensory neurons is accessible with infrared microspectroscopy of appropriately prepared cells. In this paper, individual dorsal root ganglion (DRG) neurons have been prepared with two different protocols, and plated on glass cover slips, BaF2 and CaF2 substrates. The first protocol exposes the intact DRGs to 4 °C for between 20-30 minutes before dissociating individual neurons and plating 2 hours later. The second protocol maintains the neurons at 23 °C for the entire duration of the sample preparation. The visual appearance of the neurons is similar. The viability was assessed by means of trypan blue exclusion method to determine the viability of the neurons. The neurons prepared under the first protocol (cold exposure) and plated on BaF2 reveal a distinct chemical signature and chemical distribution that is different from the other sample preparations described in the paper. Importantly, results for other sample preparation methods, using various substrates and temperature protocols, when compared across the overlapping spectral bandwidth, present normal chemical distribution within the neurons. The unusual chemically specific spatial variation is dominated by a lack of protein and carbohydrates in the center of the neurons and signatures of unraveling DNA are detected. We suggest that cold shock leads to apoptosis of DRGs, followed by osmotic stress originating from ion gradients across the cell membrane leading to cell lysis.


Subject(s)
Apoptosis , Cold-Shock Response , Ganglia, Spinal/cytology , Infrared Rays , Neurons/cytology , Animals , Calcium Fluoride/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared
14.
J Biol Chem ; 289(49): 34241-9, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25271163

ABSTRACT

Fourier transform infrared spectromicroscopy provides label-free imaging to detect the spatial distribution of the characteristic functional groups in proteins, lipids, phosphates, and carbohydrates simultaneously in individual DRG neurons. We have identified ring-shaped distributions of lipid and/or carbohydrate enrichment in subpopulations of neurons which has never before been reported. These distributions are ring-shaped within the cytoplasm and are likely representative of the endoplasmic reticulum. The prevalence of chemical ring subtypes differs between large- and small-diameter neurons. Peripheral inflammation increased the relative lipid content specifically in small-diameter neurons, many of which are nociceptive. Because many small-diameter neurons express an ion channel involved in inflammatory pain, transient receptor potential ankyrin 1 (TRPA1), we asked whether this increase in lipid content occurs in TRPA1-deficient (knock-out) neurons. No statistically significant change in lipid content occurred in TRPA1-deficient neurons, indicating that the inflammation-mediated increase in lipid content is largely dependent on TRPA1. Because TRPA1 is known to mediate mechanical and cold sensitization that accompanies peripheral inflammation, our findings may have important implications for a potential role of lipids in inflammatory pain.


Subject(s)
Carbohydrates/chemistry , Ganglia, Spinal/chemistry , Inflammation/metabolism , Lipids/chemistry , Pain/metabolism , Sensory Receptor Cells/chemistry , Transient Receptor Potential Channels/genetics , Animals , Cell Size , Freund's Adjuvant , Ganglia, Spinal/metabolism , Ganglia, Spinal/ultrastructure , Gene Expression , Hindlimb , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pain/chemically induced , Pain/genetics , Pain/pathology , Primary Cell Culture , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/ultrastructure , Spectroscopy, Fourier Transform Infrared , TRPA1 Cation Channel , Transient Receptor Potential Channels/deficiency
15.
Int J Mol Sci ; 14(11): 22753-81, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24256815

ABSTRACT

Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells.


Subject(s)
Cell Tracking , Imaging, Three-Dimensional , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Cell Tracking/instrumentation , Cell Tracking/methods , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...