Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(8): e0237087, 2020.
Article in English | MEDLINE | ID: mdl-32813723

ABSTRACT

Water buffalo (Bubalus bubalis) is an important source of meat and milk in countries with relatively warm weather. Compared to the cattle genome, a little has been done to reveal its genome structure and genomic traits. This is due to the complications stemming from the large genome size, the complexity of the genome, and the high repetitive content. In this paper, we introduce a high-quality draft assembly of the Egyptian water buffalo genome. The Egyptian breed is used as a dual purpose animal (milk/meat). It is distinguished by its adaptability to the local environment, quality of feed changes, as well as its high resistance to diseases. The genome assembly of the Egyptian water buffalo has been achieved using a reference-based assembly workflow. Our workflow significantly reduced the computational complexity of the assembly process, and improved the assembly quality by integrating different public resources. We also compared our assembly to the currently available draft assemblies of water buffalo breeds. A total of 21,128 genes were identified in the produced assembly. A list of milk virgin-related genes; milk pregnancy-related genes; milk lactation-related genes; milk involution-related genes; and milk mastitis-related genes were identified in the assembly. Our results will significantly contribute to a better understanding of the genetics of the Egyptian water buffalo which will eventually support the ongoing breeding efforts and facilitate the future discovery of genes responsible for complex processes of dairy, meat production and disease resistance among other significant traits.


Subject(s)
Buffaloes/genetics , Genome , Animals , Molecular Sequence Annotation , Whole Genome Sequencing
2.
J Bioinform Comput Biol ; 7(2): 287-308, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19340916

ABSTRACT

Subsequent duplication events are responsible for the evolution of the minisatellite maps. Alignment of two minisatellite maps should therefore take these duplication events into account, in addition to the well-known edit operations. All algorithms for computing an optimal alignment of two maps, including the one presented here, first deduce the costs of optimal duplication scenarios for all substrings of the given maps. Then, they incorporate the pre-computed costs in the alignment recurrence. However, all previous algorithms addressing this problem are dependent on the number of distinct map units (map alphabet) and do not fully make use of the repetitiveness of the map units. In this paper, we present an algorithm that remedies these shortcomings: our algorithm is alphabet-independent and is based on the run-length encoding scheme. It is the fastest in theory, and in practice as well, as shown by experimental results. Furthermore, our alignment model is more general than that of the previous algorithms, and captures better the duplication mechanism. Using our algorithm, we derive a quantitative evidence that there is a directional bias in the growth of minisatellites of the MSY1 dataset.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA, Satellite/genetics , Minisatellite Repeats/genetics , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Base Sequence , Molecular Sequence Data
3.
BMC Bioinformatics ; 9: 516, 2008 Dec 04.
Article in English | MEDLINE | ID: mdl-19055792

ABSTRACT

BACKGROUND: Due to recent progress in genome sequencing, more and more data for phylogenetic reconstruction based on rearrangement distances between genomes become available. However, this phylogenetic reconstruction is a very challenging task. For the most simple distance measures (the breakpoint distance and the reversal distance), the problem is NP-hard even if one considers only three genomes. RESULTS: In this paper, we present a new heuristic algorithm that directly constructs a phylogenetic tree w.r.t. the weighted reversal and transposition distance. Experimental results on previously published datasets show that constructing phylogenetic trees in this way results in better trees than constructing the trees w.r.t. the reversal distance, and recalculating the weight of the trees with the weighted reversal and transposition distance. An implementation of the algorithm can be obtained from the authors. CONCLUSION: The possibility of creating phylogenetic trees directly w.r.t. the weighted reversal and transposition distance results in biologically more realistic scenarios. Our algorithm can solve today's most challenging biological datasets in a reasonable amount of time.


Subject(s)
Algorithms , Computational Biology/methods , Evolution, Molecular , Gene Rearrangement , Genome , Genomics/methods , Mutation , Analysis of Variance , Animals , Campanulaceae/genetics , DNA, Chloroplast/genetics , DNA, Circular/genetics , DNA, Mitochondrial/genetics , Databases, Genetic , Models, Genetic , Phylogeny
4.
BMC Bioinformatics ; 9: 476, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-19014477

ABSTRACT

BACKGROUND: Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. RESULTS: Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit) that allows solving several different tasks in a unified framework: (1) finding regions of high similarity among multiple genomic sequences and aligning them, (2) comparing two draft or multi-chromosomal genomes, (3) locating large segmental duplications in large genomic sequences, and (4) mapping cDNA/EST to genomic sequences. CONCLUSION: CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component), CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics.


Subject(s)
Comparative Genomic Hybridization/methods , Statistics as Topic/methods , Animals , Humans , Software/trends , Statistics as Topic/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...